一、改变取样比,以调节输出电压范围
在取样电路中接入电位器RW,如图Z0722所示。调节RW时,可使输出电压UL在一定范围内连续可调。由图可见:
则:
式中取样比n的取值范围一般为0.5~0.8 ; 为RW的活动头到R2上端的部分。
二、调整管采用复合管
串联型晶体管稳压电路中,全部负载电流IL都要通过调整管。IL大时调整管的基极电流IB1也要大。比如IL=1A,β1=50,则IB1=20mA,这么大的电流要比较放大管T2的集电极电流提供是很困难的,如果调整管改用复合管这个问题就会得到解决。如图Z0723所示,T1、T2组成复合管,如β1=β2 = 50,复合管的β=2500,则复合管的IB1=0.4 mA。只要比较放大管的集电极工作电流为1~2mA,则完全可以保证提供这么大电流。此外由式(GS0724)可知,由于β1增大,RO减小,电源的稳定性得到提高。
三、带有辅助电源和差动放大器的稳压电路
比较放大级应具有较高的增益和温度稳定性,为了有较大的增益,总希望比较放大管的集电极负载RC(R4)阻值大一些,这将使R4两端的电压降增大,同时UCE1,增大,势必增加调整管的功耗。另外,RC直接与输入端相接,当输入电压Ui变化时,直接通过RC把变化量 △Ui加到调整管的基极,使输出电压随之波动,为了克服上述缺点,可以采用辅助电源给放大器供电,如图Z0724所示。辅助电源由DZ2和R5组成,UZ2为辅助电源的输出电压,即DZ2两端的电压。显然;比较放大器的电源电压为UL + UZ2,是一个稳定性较好的电压。R4的压降则
为IC2R4 ≈UZ2,这样既解决了△Ui 直接通过R4对调整管基极电位的影响问题,也可以使R4取值大一些而不增加调整管的管耗。
为了解决温度变化所产生的零点漂移影响输出电压稳定的问题,采用差动放大电路或集成运放电路作比较放大器,是进一步提高电源稳定性的有效措施。这两个电路如图Z0725和图Z0726所示。
四、过载保护电路
串联型晶体管稳压电路的负载电流全部通过调整管,当输出过载,特别是输出端短路时,调整管几乎承受全部输入电压(因为:UCE1 = Ui - UL, 输出短路时,UL=0),并流过很大的电流,使调整管的管耗增大以至损坏。即使这种过载现象时间很短,也是不允许的,由于晶体管的热容量很小,普通保险丝不能起到保护作用,所以需要设置电子保护电路。
1. 限流型过载保护电路
电路如图 Z0727所示,保护电路由DZ2和电阻Rg组成,Rg称检测电阻,在正常情况下,Rg上的压降不足以使保护管DZ2导通(适当选择Rg及DZ2的UZ值使DZ2正常工作时处于截止状态)。当IL过大时,IL Rg 增大,UBE1 + IL Rg 使稳压管DZ2反向击穿(导通),使调整管T1的基极电位下降,则UCE1增加,于是IL减小,IL被限制但不能截止,所以叫限流型。这种保护电路简单,但灵敏度稍差。
2.截止型过载保护电路
在这种电路中,当过载或输出短路时,可使调整管处于完全截止状态。图Z0728中绿色区域内为保护电路,适当选择Rg、R4、R5、R6、R7、R8及DZ2诸元件,使得正常工作时保护管T3处于可靠截止状态,即UBE3?/font>剑?font size="+1">UR5+URg - UR7)<0,此时保护电路对正常输出没有影响。当输出电流IL过大或输出短路时,URg = IL Rg增大并使T3导通,则集电极电压UC3下降,使T1管趋于截止,UCE1增大,而UCE1的增大使UL减小,则UR7减小,使T3进一步导通,UL进一步下降,引起瞬间正反馈循环过程导致T1完全截止。这样,输出电压和电流接近于零,从而起到保护作用。如果短路或过载的故障已经排除,输出电压则会自动上升,使电路恢
复正常工作。由于正反馈作用使调整管在故障过程中截止,所以又称反馈截止型保护电路。
编辑:神话 引用地址:[组图]提高稳压电源性能的措施
在取样电路中接入电位器RW,如图Z0722所示。调节RW时,可使输出电压UL在一定范围内连续可调。由图可见:
则:
式中取样比n的取值范围一般为0.5~0.8 ; 为RW的活动头到R2上端的部分。
二、调整管采用复合管
串联型晶体管稳压电路中,全部负载电流IL都要通过调整管。IL大时调整管的基极电流IB1也要大。比如IL=1A,β1=50,则IB1=20mA,这么大的电流要比较放大管T2的集电极电流提供是很困难的,如果调整管改用复合管这个问题就会得到解决。如图Z0723所示,T1、T2组成复合管,如β1=β2 = 50,复合管的β=2500,则复合管的IB1=0.4 mA。只要比较放大管的集电极工作电流为1~2mA,则完全可以保证提供这么大电流。此外由式(GS0724)可知,由于β1增大,RO减小,电源的稳定性得到提高。
三、带有辅助电源和差动放大器的稳压电路
比较放大级应具有较高的增益和温度稳定性,为了有较大的增益,总希望比较放大管的集电极负载RC(R4)阻值大一些,这将使R4两端的电压降增大,同时UCE1,增大,势必增加调整管的功耗。另外,RC直接与输入端相接,当输入电压Ui变化时,直接通过RC把变化量 △Ui加到调整管的基极,使输出电压随之波动,为了克服上述缺点,可以采用辅助电源给放大器供电,如图Z0724所示。辅助电源由DZ2和R5组成,UZ2为辅助电源的输出电压,即DZ2两端的电压。显然;比较放大器的电源电压为UL + UZ2,是一个稳定性较好的电压。R4的压降则
为IC2R4 ≈UZ2,这样既解决了△Ui 直接通过R4对调整管基极电位的影响问题,也可以使R4取值大一些而不增加调整管的管耗。
为了解决温度变化所产生的零点漂移影响输出电压稳定的问题,采用差动放大电路或集成运放电路作比较放大器,是进一步提高电源稳定性的有效措施。这两个电路如图Z0725和图Z0726所示。
四、过载保护电路
串联型晶体管稳压电路的负载电流全部通过调整管,当输出过载,特别是输出端短路时,调整管几乎承受全部输入电压(因为:UCE1 = Ui - UL, 输出短路时,UL=0),并流过很大的电流,使调整管的管耗增大以至损坏。即使这种过载现象时间很短,也是不允许的,由于晶体管的热容量很小,普通保险丝不能起到保护作用,所以需要设置电子保护电路。
1. 限流型过载保护电路
电路如图 Z0727所示,保护电路由DZ2和电阻Rg组成,Rg称检测电阻,在正常情况下,Rg上的压降不足以使保护管DZ2导通(适当选择Rg及DZ2的UZ值使DZ2正常工作时处于截止状态)。当IL过大时,IL Rg 增大,UBE1 + IL Rg 使稳压管DZ2反向击穿(导通),使调整管T1的基极电位下降,则UCE1增加,于是IL减小,IL被限制但不能截止,所以叫限流型。这种保护电路简单,但灵敏度稍差。
2.截止型过载保护电路
在这种电路中,当过载或输出短路时,可使调整管处于完全截止状态。图Z0728中绿色区域内为保护电路,适当选择Rg、R4、R5、R6、R7、R8及DZ2诸元件,使得正常工作时保护管T3处于可靠截止状态,即UBE3?/font>剑?font size="+1">UR5+URg - UR7)<0,此时保护电路对正常输出没有影响。当输出电流IL过大或输出短路时,URg = IL Rg增大并使T3导通,则集电极电压UC3下降,使T1管趋于截止,UCE1增大,而UCE1的增大使UL减小,则UR7减小,使T3进一步导通,UL进一步下降,引起瞬间正反馈循环过程导致T1完全截止。这样,输出电压和电流接近于零,从而起到保护作用。如果短路或过载的故障已经排除,输出电压则会自动上升,使电路恢
复正常工作。由于正反馈作用使调整管在故障过程中截止,所以又称反馈截止型保护电路。
上一篇:[组图]稳压电源的质量指标
下一篇:[图文]一款超低电源稳压器电路原理图
- 热门资源推荐
- 热门放大器推荐
小广播
热门活动
换一批
更多
最新电源管理文章
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
- 【有奖分享】MPS带您快速探究电源设计秘密
- 了解 MPS 隔离解决方案,答题赢【华为蓝牙无线耳机、小米氮化镓充电器】!
- 有奖问答:解锁智能变送器方案
- 雷柏、京造的无线充电鼠标垫,等你拆开看——EEWorld邀你来玩拆解(第三期)
- 有奖直播|Nexperia针对车联网应用的高效ESD解决方案
- 有奖直播报名|瑞萨RA MCU家族成员快速增长,助力打造安全稳定的工业控制系统
- 免费申请评测:1.3元起的国产USB和Touchkey单片机CH554评估板
- 直播已结束【英飞凌智能门锁解决方案】
- 炎炎盛夏,EEWORLD社区6月明星人物出炉喽!
- 有奖直播|如何借助Mentor Xpedition AMS对汽车CAN总线进行仿真优化分析?
11月16日历史上的今天
厂商技术中心