热敏电阻型浪涌抑制器在电源设计中的应用

最新更新时间:2011-08-16来源: 互联网关键字:热敏电阻  浪涌  抑制器  电源 手机看文章 扫描二维码
随时随地手机看文章
本文首先分析电子产品为什么会有开机浪涌,然后以典型的电源电路为例分析如何使用热敏电阻抑制浪涌电流,最后介绍热敏电阻在实际应用中应如何选型。

  开机浪涌电流产生的原因

  图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。

  

 

  图1 电源示意图

  假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。

  浪涌电流的抑制

  浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。

  

 

  图2 110/220Vac双输入电源示意图

  NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC热敏电阻指的就是功率型热敏电阻器。

  图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。

  其工作原理如下:

  在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。

  开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。

  断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。

上述使用NTC浪涌抑制器的电路与使用固定电阻的电路相比,已经具备了节能的特性。对于某些特殊的产品,如工业产品,有时客户会提出如下要求:1、如何降低NTC的故障率以提高其使用寿命?2、如何将NTC的功耗降至最低?3、如何使串联了NTC热敏电阻的电源电路能适应循环开关的应用条件?

  对于第1、2两点,因为NTC热敏电阻的主要作用是抑制浪涌,产品正常启动后它所消耗的能量是我们不需要的,如果有一种可行的办法能将NTC热敏电阻从正常工作的电路中切断,就可以满足这种要求。

  对于第3点,首先分析为什么使用了NTC热敏电阻的产品不能频繁开关。从电路工作原理的分析我们可以看到,在正常工作状态下,是有一定电流通过NTC热敏电阻的,这个工作电流足以使NTC的表面温度达到100℃~200℃。当产品关断时,NTC热敏电阻必须要从高温低阻状态完全恢复到常温高阻状态才能达到与上一次同等的浪涌抑制效果。这个恢复时间与NTC热敏电阻的耗散系数和热容有关,工程上一般以冷却时间常数作为参考。所谓冷却时间常数,指的是在规定的介质中,NTC热敏电阻自热后冷却到其温升的63.2%所需要的时间(单位为秒)。冷却时间常数并不是NTC热敏电阻恢复到常态所需要的时间,但冷却时间常数越大,所需要的恢复时间就越长,反之则越短。

  在上述思路的指导下,产生了图3的改进型电路。产品上电瞬间,NTC热敏电阻将浪涌电流抑制到一个合适的水平,之后产品得电正常工作,此时继电器线圈从负载电路得电后动作,将NTC热敏电阻从工作电路中切去。这样,NTC热敏电阻仅在产品启动时工作,而当产品正常工作时是不接入电路的。这样既延长了NTC热敏电阻的使用寿命,又保证其有充分的冷却时间,能适用于需要频繁开关的应用场合。

  

 

  图3 带继电器旁路电路的电源设计示意图

  NTC热敏电阻的选型

  NTC热敏电阻的选型要考虑以下几个要点:

  最大额定电压和滤波电容值

  滤波电容的大小决定了应该选用多大尺寸的NTC。对于某个尺寸的NTC热敏电阻来说,允许接入的滤波电容的大小是有严格要求的,这个值也与最大额定电压有关。在电源应用中,开机浪涌是因为电容充电产生的,因此通常用给定电压值下的允许接入的电容量来评估NTC热敏电阻承受浪涌电流的能力。对于某一个具体的NTC热敏电阻来说,所能承受的最大能量已经确定了,根据一阶电路中电阻的能量消耗公式E=1/2×CV2可以看出,其允许的接入的电容值与额定电压的平方成反比。简单来说,就是输入电压越大,允许接入的最大电容值就越小,反之亦然。

  NTC热敏电阻产品的规范一般定义了在220Vac下允许接入的最大电容值。假设某应用条件最大额定电压是420Vac,滤波电容值为200μF,根据上述能量公式可以折算出在220Vac下的等效电容值应为200×4202/2202=729μF,这样在选型时就必须选择220Vac下允许接入电容值大于729μF的型号。

  产品允许的最大启动电流值和长期加载在NTC热敏电阻上的工作电流

  电子产品允许的最大启动电流值决定了NTC热敏电阻的阻值。假设电源额定输入为220Vac,内阻为1Ω,允许的最大启动电流为60A,那么选取的NTC在初始状态下的最小阻值为Rmin=(220×1.414/60)-1=4.2(Ω)。至此,满足条件的NTC热敏电阻一般会有一个或多个,此时再按下面的方法进行选择。

  产品正常工作时,长期加载在NTC热敏电阻上的电流应不大于规格书规定的电流。根据这个原则可以从阻值大于4.2Ω的多个电阻中挑选出一个适合的阻值。当然这指的是在常温情况下。如果工作的环境温度不是常温,就需要按下文提到的原则来进行NTC热敏电阻的降额设计。

  NTC热敏电阻的工作环境

  由于NTC热敏电阻受环境温度影响较大,一般在产品规格书中只给出常温下(25℃)的阻值,若产品应用条件不是在常温下,或因产品本身设计或结构的原因,导致NTC热敏电阻周围环境温度不是常温的时候,必须先计算出NTC在初始状态下的阻值才能进行以上步骤的选择。

  当环境温度过高或过低时,必须根据厂家提供的降功耗曲线进行降额设计。将功耗曲线一般有两种形式,如图4所示。

  

 

  图4 降功耗曲线

  对曲线a,允许的最大持续工作电流可用以下公式表示:

  

 

  

 

  对曲线b,允许的最大持续工作电流可用以下公式表示:

  

 

  事实上,不少生产厂家都对自己的产品定义了环境温度类别,在实际应用中,应尽量使NTC热敏电阻工作的环境温度不超出厂家规定的上/下限温度。同时,应注意不要使其工作在潮湿的环境中,因为过于潮湿的环境会加速NTC热敏电阻的老化。

  结论

  通过以上分析可以看出,在电源设计中使用NTC热敏电阻型浪涌抑制器,其抑制浪涌电流的能力与普通电阻相当,而在电阻上的功耗则可降低几十到上百倍。对于需要频繁开关的应用场合,电路中必须增加继电器旁路电路以保证NTC热敏电阻能完全冷却恢复到初始状态下的电阻。在产品选型上,要根据最大额定电压和滤波电容值选定产品系列,根据产品允许的最大启动电流值和长时间加载在NTC热敏电阻上的工作电流来选择NTC热敏电阻的阻值,同时要考虑工作环境的温度,适当进行降额设计。

关键字:热敏电阻  浪涌  抑制器  电源 编辑:神话 引用地址:热敏电阻型浪涌抑制器在电源设计中的应用

上一篇:基于LTC6802的磷酸铁锂电池采集系统
下一篇:如何安装浪涌保护器

推荐阅读最新更新时间:2023-10-13 10:53

电源系统能否助力自动驾驶疾速发展?
简介 我们准备好迎接自动驾驶汽车了吗?这是我最近一直在问自己的问题,也许您也有同样的疑问!当然,就我而言,自从我十几岁的女儿开始学开车以来,我多少有点出于自身利益的考虑。在她上完第一节课后,我问她怎么样,她的回答让我有点惊讶。看起来驾车本身并不怎么让她担心,反而是她周围的驾车者令她不安。她抱怨他们总是太靠近她的后保险杠,他们从来不使用转向信号指示灯,而且他们为了变道出去,会出其不意地在她车前切进来。这些抱怨很合理,以我自己在北加利福尼亚州道路上的经历,我感同身受。 这让我想到了自动驾驶汽车,它们不需要一个人类驾驶员坐在方向盘后面(当然,也许会有一个,但并不是从传统的角度实际使用操控机制)。与之相反,相当于人类驾驶员的微型计
[汽车电子]
<font color='red'>电源</font>系统能否助力自动驾驶疾速发展?
瑞萨电子简化了用于车载全景环视摄像头系统的电源设计
全球领先的半导体解决方案供应商瑞萨电子株式会社近日宣布推出全新高度集成的电源管理IC( PMIC )——ISL78083,可简化包含多个高清摄像头模块的电源设计,以缩短开发周期、降低BOM成本及供应链风险。 车载摄像头 PMIC 可支持电池直接供电(36-42V)或同轴供电(15-18V)的电源,并支持每个输出高达750mA的输出电流;该功率水平为现有图像传感器(高达700万像素)和未来更高分辨率传感器提供充足空间。 瑞萨电子汽车事业部高级总监Niall Lyne表示:“全新ISL78083 PMIC 扩展了瑞萨对车载全景环视摄像头系统的支持,不仅提升了R-Car SoC的图像处理能力,并将其应用延伸至高清卫星摄像头的设计。采
[汽车电子]
瑞萨电子简化了用于车载全景环视摄像头系统的<font color='red'>电源</font>设计
具有多个电压轨的FPGA和DSP电源设计实例
大多数电子产品由于包含一个或多个FPGA或DSP数字处理芯片而需要提供多个电源轨。在为这些数字IC供电时,有多种方案可以选择,也有许多潜在的陷阱需要避免。在“具有多个电压轨的FPGA和DSP应用的电源设计方法”一文中,作者提出了多电压轨FPGA和DSP应用的电源解决方案,讨论了功率预算和排序选择等在系统水平所关注的问题。本文将着重讨论如何在各种类型的点到负载点(POL)直流/直流转换器之间做出选择,并讨论如何设计这些转换器才能满足直流精度以及启动和暂态要求。 降压直流/直流转换器拓扑的回顾 降压POL直流/直流转换器可以分成两类:线性稳压器和基于电感的开关稳压器。图1显示了线性稳压器的功能图。
[应用]
电源抑制的基准源的设计方案
电子镇流器的供电方式为半桥输出接稳压管给芯片供电,其输出电压为高压正弦波(50~100 kHz),加之芯片内数字部分的干扰,这就给芯片的电源带来较大的干扰。因此对芯片内基准的中频PSR(Power Supply Rejection,电源抑制)有较大要求。本文从此角度在Brokaw带隙基准的基础上进行改进,采用LDO与基准的级联设计来增加其PSR。   1 电路结构   1.1 基准核心   目前的基准核心可以有多种实现方案:混合电阻,Buck voltage transfer cell,但是修调复杂,不宜工业化。本设计采用Brokaw基准核心,其较易实现高压基准输出,并且其温漂、PSR及启动特性均较好。本文
[电源管理]
高<font color='red'>电源</font>抑制的基准源的设计方案
多媒体处理器动态电源管理技术
多媒体处理器通常是便携式电子设备中功耗最高的器件。降低 CPU 功耗要求的常见方法是降低时钟频率或工作电压,但是一般而言这样做会使系统性能降低。另一方面,芯片设计人员还提出了各种片上方法来降低功耗,并且不会对系统产生不利影响。本文介绍了这些方法的概念,以及我们如何运用它们实现节能的目的,同时还讨论了帮助处理器芯片获益的一些外部电源管理器件和电源 IC。 有源电源管理 片上电源管理技术主要适用于两类应用:管理有源系统功耗和管理待机功耗。 有源电源管理分为三个部分:动态电压与频率缩放 (DVFS);自适应电压缩放 (AVS);以及动态电源转换 (DPS)。另一方面,静态功耗管理包括在需要进行更多处理以前将空闲系统维持在一种低功耗状
[电源管理]
多媒体处理器动态<font color='red'>电源</font>管理技术
电源设计小贴士:驾驭噪声电源
     无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。   图 1 显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的 PWM(脉宽调制)信号。   电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。对这些节点进行精心的电气设计和物理设计有助于最大程度地缩短故障诊断时间。一般而言,噪声会与这些低电平电路电容耦合。一种卓越的设计可以确保这些低电平电路的紧密布局,并远离所有开关波形。接地层也
[电源管理]
<font color='red'>电源</font>设计小贴士:驾驭噪声<font color='red'>电源</font>
如何利用差分信令获得更好的模拟视频信号
与单端信令相比,差分信令有许多优势:电磁干扰(EMI)低、失真少、电源电压低并且成本也低。这些优势促进差分信令在许多应用中得到采用,包括数字(低压差分信令,即LVDS)应用和模拟应用(音频)。对模拟视频而言差分信令也有类似优势,但由于一些原因,大多数视频应用还在继续采用单端75Ω同轴电缆连接。 采用差分信令和低成本的CAT5网络电缆,可将模拟视频传输到很远的距离,从而降低视频互连和传输的成本。CAT5电缆在安全系统、闭路电视(CCTV)和汽车系统等普通应用中具有较高的成本效益。 如果系统配置中有大量的摄像头等视频源,特别是用于安全系统或CCTV系统的摄像头,那么通过互联网协议的视频可能是比较理想的选择方案。但当系统具有少量
[模拟电子]
便携式应用中的有源电源管理
移动电话、智能电话、PDA以及媒体播放器等当今便携式消费类电子产品均拥有非常丰富的特性与功能。这些产品高、中、低端一应俱全,其性能水平和体积大小也各不相同。总体说来,便携式应用的尺寸越来越小、功能越来越丰富、性能也越来越高,但功耗却一直居高不下。 相关示例数不胜数,如超过300万象素可拍照手机的高分辨率摄像头、电流超过1A的单个高功率闪光灯LED或数码相机中的氙气闪光灯、智能电话或媒体播放器中的高级音频或功放系统,以及大多数便携式应用中均配备的高分辨率LCD显示屏等。 设计师面临着必须同时满足静态和动态电源管理需求的挑战。随着便携式产品的功能日益丰富,应用对单电源也提出了更高的要求,从而导致电量消耗显著加大,电池使用寿命相应缩短
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved