利用零漂移仪表放大器(IA)应对传感器测量的设计

最新更新时间:2011-12-22来源: 互联网关键字:零漂移  仪表放大器  传感器 手机看文章 扫描二维码
随时随地手机看文章

利用零漂移仪表放大器(IA)应对传感器测量的设计挑战

Abstract: This article examines the use of instrumentation amplifiers (IAs) for sensor applications. It highlights system challenges and implementation choices, describes new architectures for integrated-circuit IAs, and outlines applications such as ratiometric bridges and low-side current sensing. 

A similar article appeared in February 28, 2008 edition of Electronic Design.

Sensor measurements typically translate physical phenomena of interest into electronic-circuit parameters such as resistance and capacitance, which can then be read with a bridge circuit. Bridge circuits produce an output voltage or current signal that is ratiometric with respect to temperature and power-supply voltages, thereby enabling the measurement system to self-compensate for these variables. Sensor examples include:

  • Thermistors for temperature sensing
  • Resistive/capacitive strain gauges for pressure sensing
  • Magneto-resistive sensors for direction/position sensing
Sensors that produce a signal voltage or current directly do not require a bridge circuit to transform the physical variables. Examples include thermocouples, ECG-based medical instrumentation, and voltage across the current-sense resistor in a power-monitoring circuit.

Today's sensor applications range from consumer electronics (thermometers, pressure scales, GPS systems), to automotive equipment (fuel sensors, knock sensors, brake-line sensors, window pinch control), to industrial and medical instrumentation (valve-position sensing, temperature-based system calibration and alarm, and ECG). Their environments are rich in EMI noise, power-supply harmonics, ground-loop currents, and ESD spikes, while the signals of interest that are to be extracted are extremely small. Thus, the analog-sensor interface becomes nontrivial, and must maintain exacting specifications while rejecting environmental phenomena. For commercial success, it must also deliver low cost, small size, and (for battery-operated meters) low supply current.

To Amplify or Not to Amplify

System designers like to keep analog chains short in the hope of improving the signal's immunity to external noise phenomena. (Digital circuitry is generally immune to noise, but not always.) In the past, lengthy analog chains tackled a given signal-processing task in sequential stages. One stage, for example, provided differential gain without common-mode rejection, and another provided common-mode rejection without differential gain. Dual and high-voltage supply rails also helped relax the signal-to-noise constraints on analog circuits. The requirements for shorter analog chains and single-supply, low-voltage analog power-supply rails have forced the evolution of innovative architectures to meet these challenges. 

One decision that arises early in a system design is whether or not the ADC and sensor can interface directly. Such direct connections can save both space and power in some applications. High-resistance ratiometric bridges, for instance, can use the rudimentary internal reference present in many ADCs thus eliminating the need for an external reference.

On the other hand, a substantial case can be made for the use of an instrumentation amplifier (IA) to interface the sensor to an ADC:
  • Amplifying small analog signals at their source improves the overall signal-to-noise ratio in certain applications, especially if the sensor is located at some distance from the ADC.
  • Many high-Performance ADCs do not have high-impedance inputs, and must therefore be driven by an amplifier of low source impedance to get the full benefit of their specifications. In the absence of an intermediate amplifier for such configurations, aberrations such as input current spikes and mismatched source resistances can introduce gain errors.
  • An external amplifier allows the user to optimize the signal conditioning (filtering) for an application.
  • The gain offered by an IA makes for an improved interface between sensor and ADC, both by easing the system design constraints and by reducing the overall system cost. For example, an expensive, much higher-resolution ADC would be required to read an ungained sensor signal than that required for an amplified sensor signal.

Low Offset a Big Asset

School textbooks are great at describing the ideal world. All the unknowns in an equation can be derived, and all problems have an answer listed in the back. The real world, on the other hand, is best described by long hours in the lab trying to get analog circuits to work, often when program milestones are just around the corner... 

Among the various sources of DC error encountered when using IAs to read sensor signals, the effect of input offset voltage (VOS) is perhaps the most critical. In fact, every other source of DC error is modeled in terms of the VOS: DC CMRR represents the change of DC VOS with input common-mode voltage, and DC PSRR represents the change of DC VOS with variation in power-supply voltage.

Even if VOS can be calibrated out during manufacturing, the drift of the VOS (with respect to temperature and time) is of greater concern than is the initial DC offset itself. Such drift errors are best tackled by active circuitry within the chip.

One of the important sources of AC error is noise, which is inherent in the semiconductor chip design and process. Because most sensor signals are amplified by high-gain blocks, the input referred noise is also amplified by that same gain. Noise comes in two forms: pink noise (also called 1/f or flicker noise), and white noise. Pink noise is more critical at lower frequencies (< 100Hz or so), and white noise generally determines the chip performance at higher signal bandwidths (Figure 1). Since most IAs deal with low-frequency signals, this article examines pink noise more closely.

Figure 1. Noise density in semiconductor devices.
Figure 1. Noise density in semiconductor devices.

In traditional low-noise analog-circuit design, bipolar transistors are often preferred for use in input-stage circuitry, especially if low levels of pink noise must be achieved. Pink noise originates as recombination effects at defect sites on the semiconductor surface and, therefore, CMOS device noise tends to have a larger magnitude and a higher corner frequency than does bipolar device noise. (The frequency at which the pink noise density equals the white noise density is defined as the noise corner frequency.)

Most sensors prefer high-impedance inputs, which forces the use of CMOS front-ends on IAs. This in turn would seem to make it necessary to accept the accompanying higher levels of low-frequency noise. Fortunately, zero-drift circuit-design techniques that continuously cancel out input offset voltages also tend to cancel the low-frequency input pink noise.

Cool New Architectures Are Really Hot: Three Op Amps vs. Indirect Current Feedback

A traditional IA uses three op amps to create an input buffer stage and an output stage (Figure 2). The input buffer stage provides all differential gain, unity common-mode gain, and a high-impedance input. The differential amplifier output stage then provides a unity differential gain with zero common-mode gain. This IA works quite well in many applications, but its simplicity hides two significant drawbacks: the usable input common-mode voltage range is limited, and its AC CMRR is limited.

Figure 2. A traditional three-op-amp IA.
Figure 2. A traditional three-op-amp IA. 

IAs based on three-op-amp architectures suffer a restrictive transfer characteristic (Figure 3). Their architecture can allow the outputs of buffer amplifiers A1 and A2 to saturate into the power-supply rails during a certain combination of input common-mode and input differential voltage. In this condition, the IA no longer rejects input common-mode voltages.

Figure 3. Limited transfer characteristic at various common-mode voltages (at high gain, the
Figure 3. Limited transfer characteristic at various common-mode voltages (at high gain, the "eye" compresses).

As a result, the data sheets for most three-op-amp IAs show a plot of the usable input common-mode voltage vs. output voltage. Because output voltage is simply a scaled version of the input differential voltage, the two axes of this plot could as well be labeled "input common-mode voltage" and "input differential voltage." The gray area within the hexagon depicts the "valid" zone of operation, within which the outputs of amplifiers A1 and A2 are not saturated into the power-supply rails.

Note that the Figure 3 graph has an important implication for single-supply applications. Common-mode voltages can easily approach the circuit ground, to which the gray zone does not extend. Certain applications (such as low-side current sensing) cannot use a traditional three-op-amp IA, because the input common-mode voltage equals the ground potential.

Three-op-amp IAs achieve high common-mode rejection at DC by matching on-chip resistors around the differential amplifier, but the feedback architecture of such IAs can substantially degrade the AC CMRR. To overcome this and other drawbacks, alternate IA architectures have been developed. The two-gM indirect current-feedback approach, for instance, has found considerable success (Figure 4).

Figure 4. Indirect current-feedback architecture for IAs.
Figure 4. Indirect current-feedback architecture for IAs.

The two-gM architecture consists of two matched transconductance amplifiers and a high-gain amplifier. Because the matched amplifiers have the same gM, they develop equal differential voltages at their inputs, and the output voltage is therefore determined by the resistor divider ratio Rf/Rg. The output common-mode voltage is set by voltage at the REF pin. Voltage-to-current conversion implemented by the input gM amplifier inherently rejects the input common-mode voltage, giving the amplifier a high DC and AC CMRR.

The indirect current-feedback IA architecture allows a full output-voltage swing, even when the input common-mode voltage equals the negative supply rail. Thus, it offers an expanded range of operation not obtainable with the three-op-amp IA architectures. Examples of this IA type that are available from Maxim include the MAX4460/MAX4461/MAX4462 and the MAX4208/MAX4209.

Offset-Cancellation Techniques: Catch the Drift?

As mentioned above, two important specifications for IAs are pink noise (also called 1/f or flicker noise), and VOS and its drift (vs. temperature and time). Because 1/f noise is a low-frequency phenomenon, many of the circuit techniques used to achieve "zero drift" and cancellation of input-offset voltage also remove 1/f noise. These techniques include sampling amplifiers, auto zeroing amplifiers, chopper amplifiers, chopper-stabilized amplifiers, and chopper-chopper-stabilized amplifiers (the MAX4208, for example). These architectures are described in multiple articles and patents (see References), and each offers a different combination of usable signal bandwidth, switching noise, and the resulting accuracy of input-offset cancellation.

For example, sampling techniques based on flying capacitors have been applied to IAs for the purpose of autocorrecting input offset voltages. However, because a sampled input is not truly a high-impedance structure, the resulting system-level accuracy can be compromised by a mismatch in source resistances, such as those found in certain unbalanced bridges.

Applications

This section describes two IA applications: a ratiometric bridge circuit and a low-side current-sense amplifier.

Bridge over Troubled Waters

A variation of the standard bridge-measurement system is the ratiometric bridge, which delivers similar high accuracy but at a lower cost. Cost is lower because the ratiometric bridge does not require a precision reference source for driving the bridge and ADC reference input. Instead, a "free" but relatively inaccurate and high-ppm/°C reference source such as the power-supply rail can be used to drive both the bridge and the ADC.

It is well known that even an op amp with rail-to-rail output has trouble maintaining full accuracy while driving its output to within a few hundred millivolts of either rail. For an amplifier with high dynamic range and unipolar-signal inputs, it is therefore necessary to bias the output above ground by 250mV or so. This bias voltage drives one end of a resistor chain and therefore should be driven by a buffer of low output impedance to avoid introducing unintentional gain errors. To minimize output errors, this unity-gain op-amp buffer should also have low DC offset and low drift.

An IA from Maxim (e.g., the MAX4208) integrates a precision, zero-drift op-amp buffer and a two-gM indirect current-feedback IA in a small µMAX® package. This buffer and a simple external resistor divider (Figure 5) can be used to create a stable bias reference voltage that is ratiometric with the ADC reference voltage. It can also drive one of the inputs of a differential input ADC. The internal chopper-chopper-stabilized architecture of the IA eliminates pink noise effects in both the op-amp buffer and the gM amplifiers of the main (forward) and feedback paths. The part also includes a shutdown mode that is useful for power-sensitive applications.

Figure 5. Driving a ratiometric bridge (MAX4208–MAX4209).
Figure 5. Driving a ratiometric bridge (MAX4208–MAX4209).

Make Perfect Current-Sense

The increasing need for active power management in today's portable electronic devices has led to a renewal of interest in current-sensing amplifiers. A ground-sensing IA can be used as a high-side current-sense amplifier in the core-voltage path of a memory module or microprocessor (Figure 6), or as a low-side current-sense amplifier in the return path of an H-bridge power electronic converter. The extremely high currents in these applications (sometimes approaching 90A) imply that the sense voltage must be extremely small to prevent excessive power loss in the sense resistor. Quite often, this sense resistor is simply the ESR of the power-supply inductor itself. To read these small sense voltages accurately, the VOS must be extremely small in comparison with smallest sense voltage (i.e., smallest load current) that is required to be amplified with accuracy.

Figure 6. Sensing high current in computer applications (MAX4208).
Figure 6. Sensing high current in computer applications (MAX4208). 

Core voltages in computer hardware can vary from 0.9V to 1.5V, and thus the small sense voltage must be measured in the presence of a common-mode voltage that is low and varying. An IA such as the MAX4208 with low VOS, high CMRR, and an architecture optimized for single-supply applications is, therefore, ideal for this purpose.

Conclusion

New applications are continually fueling the quest for ideal instrumentation amplifiers, as is evident from the multiple architectures available for tackling the challenges of VOS, drift of VOS, and 1/f noise. To fully leverage the benefits of chip technology, it is useful to understand the nuances of instrumentation amplifier design, and how that design relates to the needs of the application.



References
  • Thomas Frederiksen, Intuitive IC Op Amps (National Semiconductor Technology Series, 1984).

  • Horowitz, Paul, & Hill, Winfield, The Art of Electronics (Cambridge University Press, 1989).

  • Graeme, Jerald, Optimizing Op Amp Performance (McGraw-Hill, 1997).

  • Huijsing, Johan, Operational Amplifiers—Theory and Design (Kluwer Academic Publishers, 2001).

  • Maxim Integrated Products, Inc., "Chopper chopper-stabilized operational amplifiers and methods," U.S. Patent #6734723 (May 11, 2004).

  • Nolan, Eric, Moghimi, Reza, "Demystifying Auto-Zero Amplifiers," Analog Dialogue (Analog Devices, Inc., May 2000).

  • Kugelstadt, Thomas, "Auto-zero amplifiers ease the design of high-precision circuits," TI Analog Applications Journal (2005).

µMAX is a registered trademark of Maxim Integrated Products, Inc.
Intel is a registered trademark of Intel Corporation.
Pentium is a registered trademark of Intel Corp.

关键字:零漂移  仪表放大器  传感器 编辑:神话 引用地址:利用零漂移仪表放大器(IA)应对传感器测量的设计

上一篇:水泥电阻器的判别方法
下一篇:怎样/如何用万用表判别变压器的好坏

推荐阅读最新更新时间:2023-10-12 20:33

主流仪表放大器芯片学习详解(1):AD620 五
AD620典型应用电路中AD705的作用的一些问题?   AD705的作用是电压跟随,做个模拟地。如果电桥四个电阻匹配的话(即AD620正负输入关为0)6脚应该输出2V.。输出0.69V应该是电阻不匹配共模电压不为0所至(如果RG取120欧放大倍数得四百多,有1mV多共模电压就会导至这个结果,实际接压力传感器之类应做个恒流源取样,则不会这样),建议直接将放大器正负输入端短路试试。AD的数字地应接5V的GND上,不能接2V。图中AD参考电压是1V。   放大器AD623和AD620可以互换吗?AD705的输出接AD620的5脚。无信号输入时ADC接收为2V,由于ADC不能接收负信号,而电子枰之类的有时需要负信号,所以2V
[模拟电子]
主流<font color='red'>仪表放大器</font>芯片学习详解(1):AD620 五
索尼展示曲面相机传感器
    众所周知,现在市面上的数码相机采用的都是平面图像传感器。而根据国外媒体的报道,以影像传感器作为主要业务之一的索尼近日在夏威夷举办的Symposium on VLSI Technology技术展会上展示了一款模仿人眼视网膜的曲面CMOS传感器。     来自索尼研究开发部门的相关人员表示,与传统平面CMOS传感器相比,曲面CMOS传感器不仅对光的敏感度更高,而且能够搭配结构更加简单的镜头。据悉,这块曲面CMOS传感器中心和边缘的光线敏感度分别达到了传统传感器的1.4倍和2倍。     由于采用了曲面的设计,因此可以使镜头使用更简单的镜组和更大的光圈,而传感器也将接收到更多的光线。与平面传感器相比,曲面传感器更重要
[家用电子]
大气压强传感器TP015P在海拔高度测量中的应用
O 引言 对于身处野外的人来说,一个比较关心的问题就是所在地的海拔是多少。而目前市面上这类产品很少,一般都是高端产品才带有此项功能。有的机械式海拔仪虽然价格较低,但精度太低。所以急需研制一种精度高,价格低廉的海拔仪,以满足大众消费的需求。对于海拔高度的测量,常用的方法。一是GPS全球定位系统;二是通过测量大气压来间接的获得海拔高度。前一种方法成本较高且难度较大,而采用后一种方法相对来说,器件的选择范围要更广一些,因而可以把成本降到最低。 1 多功能海拔仪的总体设计思路 本文采用测量大气压强来间接的获得海拔高度的方法。通过大气压强传感器得到表征大气压强的电压信号,该信号通过放大电路和滤波电路后,再进行A/
[模拟电子]
PYTHON25K全局快门CMOS图像传感器演示
iframe height="498" width="510" src="http://player.youku.com/embed/XMjUxMjA4NDA2OA==" frameborder="0" /iframe
[传感器]
超声波传感器在汽车行业的应用:智能停车场
据有关数据显示:截至2018年底,全国汽车保有量达到2.4亿辆,全国范围内,汽车保有量超过100万辆的城市有61个,其中有27个城市超过200万辆,北京、成都、重庆、上海、苏州、深圳、郑州、西安8个城市,甚至超过300万辆。按照14亿人口计算,平均每7个中国人就拥有一辆小汽车。 停车场是供停放车辆的地方,主要作用是保管停放的车辆,收取停车费用。停车场是城市交通基础建设中极为重要的组成部分,而国内车辆那么多,有限的停车场数量变得供不应求,并且根据科学技术的不断更新迭代,对于停车场的建设也提出了更多的要求,除了停车位数量的要求,还要求停车场有智能引导、停车位的使用情况有个直观的显示等。 当前大部分停车场,车位指示不明确、车位使
[汽车电子]
超声波<font color='red'>传感器</font>在汽车行业的应用:智能停车场
新式超灵敏生物传感器,可用于早期医学诊断
    近日,来自普渡大学的研究者发明了一种超灵敏的生物传感器,可以对癌症和病人个性化用药涉及的生化反应进行早期及时检测。这种生物传感器结合了两种不同类型的传感器,比一般的传感器敏感度高数百倍。研究者Muhammad A.Alam表示,一般来讲,单独的不同类型的生物传感器的检测敏感性会有一定限制,但是如果将其结合起来,就会克服其敏感性上的限制。相关研究成果刊登在了5月14日的国际杂志PNAS上。 新式的超灵敏生物传感器,可以对癌症和病人个性化用药涉及的生化反应进行早期及时检测 (Credit: Purdue University image) 这种名叫Flexure-FET的生物传感器结合了一个机械传感器和电子传感器,前者
[工业控制]
振动能为传感器网络注入环境智能
2007 年8月1 日,位于明尼阿波利斯的 I-35W 密西西比河大桥轰然坍塌,有 13 人遇难,100 多人受伤,这场悲剧揭示了美国全国所面临的一个严重问题。大家所依赖的大部分交通基础设施日趋老化,因此需要维修。事实上,联邦公路管理局 (Federal Highway Administration) 早在 2006 就已经列出:全国有四分之一以上的桥梁均存在严重问题,有的存在结构缺陷;有的已经丧失功能。我们又该如何在避免将来再次发生此类灾难的同时延长这些设施的使用寿命? 外观检查显然已不能满足检验需求:I-35W 大桥已经通过了例行外观检查。更新颖、全面的检查方法是利用传感器监测架构振动,然后将监测结果发送到数据收集点分析何时
[模拟电子]
智能传感器解决电池安全、诊断和电动汽车电池平衡问题
还记得电影《鳄鱼邓迪》中的台词吗:“那是一把刀?这是一把刀!在电动汽车世界中,这句话翻译为“那是电池?这是电池!电动汽车 (EV) 由巨大的电池组供电,电池组由串联的长串电池组成。这些电池组通常由锂离子(Li+)电池组成,可以实现高于800V的工作电压。但是,如果过度充电,这种电池化学成分的材料可能会损坏。必须监控每个电池电压,如有必要,必须采用适当的控制方法以避免过电压。过大的电池漏电流、过压、欠压和极端温度都可能导致性能下降甚至灾难性故障。 图 2 中描述的典型 EV 电池由 6720 节 Li+ 电池组成,由 3 个控制模块管理。每个电池的容量为54.100Ah,加起来电池总标称能量存储为3kWh(54.4Ah x 2.
[嵌入式]
智能<font color='red'>传感器</font>解决电池安全、诊断和电动汽车电池平衡问题
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved