LDMOS器件静电放电失效原理

最新更新时间:2012-02-11来源: 互联网关键字:LDMOS  静电放电  失效原理 手机看文章 扫描二维码
随时随地手机看文章

本文首先探讨了LDMOS器件在静电放电脉冲作用下的失效机理,阐述了LDMOS在快速静电放电脉冲作用下的电流集中和器件局部温度过高导致的金属接触孔熔融等现象以及静电放电脉冲过后的器件性能退化乃至烧毁的问题。之后通过对不同器件结构LDMOS的静电放电防护性能的分析对比,指出带埋层的深漏极注入双RESURF结构LDMOS器件在静电防护方面的优势。

1 静电放电脉冲作用下的LDMOS器 件失效

1.1 LDMOS器件的静电放电及其损伤的原理

  LDMOS器件作为输出驱动器件,尺寸较大,当寄生npn管完全导通时可以承受较大的静电放电电流,因此与常规MOS器件相比具备一定的自保护能力,标准CMOS工艺下的LDMOS器件典型结构如图l所示。图2为LDMOS器件在静电放电脉冲下的,-V特性曲线,当正向静电放电脉冲来临,漏源电压达到寄生npn晶体管导通所需的触发电压Vn.,时,n型外延层/p阱形成的pn结将发生雪崩击穿,碰撞电离产生的空穴电流会使p阱和源之间的pn结正偏,寄生npn管导通,电子从源极发射进入阱区。这些电子在源漏电场的作用下加速,使得载流子碰撞电离概率增加,从而形成更多的电子空穴对,漏源电流逐渐增大。当其超过维持电流时,器件将进入寄生npn管完全导通的大电流工作区,此时LDMOS器件将吸收大量的静电放电脉冲电流[5]。随着电流持续增加,器件温度不断升高以至于达到Si的熔点,LDMOS器件发生二次击穿损坏,其中I2为二次击穿电流。因此,只要LDMOS在静电放电脉冲作用时能够很快导通进入寄生npn管工作区,泄放静电放电电流,就可以起到保护器件自身和内部电路的作用。

1.2 LDMOS器件在静电放电脉冲下的失效分析

  LDMOS器件在理论上具备一定的抗静电放电冲击能力,然而实际TLP(transmission line pulse)测试结果却并不十分理想。静电放电脉冲引发的LDMOS器件可靠性问题主要有两种:局部电流过大引起的软击穿和电导调制效应导致的二次击穿。

  软击穿是指器件在发生硬击穿也即二次击穿前衬底漏电缓慢增加而引发器件可靠性问题的现象。图3为40 V LDMOS器件在不同栅压下的TLP测试曲线,从图中可以看出寄生npn管的二次击穿并没有十分明显的转折点,为此本文将泄漏电流达到100 nA作为发生二次击穿的标志,此时的IDS作为二次击穿电流。如图4所示,当泄漏电流为100 nA时,漏极电流密度为9 mA/um,在栅宽W为136 um的测试条件下约为1.2 A[7。然而当,t2急剧增加时,衬底泄漏电流表现出一个缓慢增加的过程,此种迹象表明LDMOS器件在发生二次击穿前性能已经开始退化,泄漏电流不断增加,即出现所谓的软击穿现象。分析表明,这是由LDMOS器件过早出现的局部范围内的大电流即电流丝引起的,并且这种击穿的影响在静电放电脉冲过后仍然存在,因此使器件的性能和可靠性降低。

  图5为LDMOS器件在静电放电脉冲作用下漏极发生二次击穿而烧毁的情形。分析得出,由于寄生npn管导通时会有大电流流过源漏注入区和漂移区/p防形成的耗尽区,引发局部加热现象。当该点温度超过一定限度时将会在耗尽区内形成电流丝或热点,使得耗尽区中局部区域的电压降低,从而终止其周围区域的雪崩击穿,此时流过该点的电流会受到从金属接触孔到该点的等效电阻的限制。然而,尽管电流受到了一定的限制,电流丝引起的局部过热和耗尽区内电压的降低将会使该点电流持续增加,使得金属接触和耗尽区的温度不断上升,电流丝扩展到整个源漏注入区域。一旦电流扩展到金属接触孔,电导调制效应会使注入区和漂移区的电阻急剧降低,从而失去对电流的限制作用。此时,流过该区域的电流就会突然增加,最终导致Si和金属接触窗烧熔。

2 LDMOS器件结构和尺寸对其静电放电防护性能的影响

2.1 栅宽的影响

  对于功率器件来说,增加栅极宽度可以提高其电流驱动能力,使得在同样的条件下器件能流过更大的电流。然而,LDMOS器件的静电放电防护性能并不随着器件栅宽尺寸的增加而改善,相反却有着恶化的趋势,并且在多栅极条的情况下更加严重。图为实际测量的LDMOS器件在不同栅压下二次击穿电流I随栅宽变化关系曲线图,Io无论在何种偏置条件下均随W增加呈明显的下降趋势。图7为栅宽为4 000 um、栅极条数为96的LDMOS器件在不同栅压下失效曲线[13]。由图可以看出该结构的器件在源漏电压到达触发电压Vn时就开始损坏,完全失去了LDMOS器件的抗静电放电脉冲击穿能力。分析表明,多晶Si栅电阻和寄生电容的存在,去使静电放电脉冲到各个栅极条的延时不同[14]。因而,在静电放电脉冲作用的几十个纳秒内,各栅极条上的电压不同,从而导致静电放电泄放电流集中在最早导通的栅极条上,该区域内的温度急剧升高,在寄生npn管完全导通前LDMOS器件过早发生击穿失效。上述现象表明,在静电放电脉冲作用下,LDMOS器件表现出的电流丝效应和各栅极条的非均匀导通现象在多栅极条情况下更加严重,会在整个器件进入大电流工作区域前将其破坏。因此,仅仅依靠增大栅宽或增加栅极条数不能使二次击穿电流Tn显著增加,因而无法明显改善LDMOS器件的静电放电防护性能。

2.2 LOCOS长度和埋层(NBL)的影响

  研究表明,LDMOS器件的静电放电防护性能受器件结构和有关尺寸的影响很大,等比例缩小理论在LDMOS器件的静电防护能力方面不再适用。图8给出了两种不同结构的LDMOS器件,图8(a)所示LDMOS是在Si衬底上直接扩散n型漂移区形成的,而图8 (b)在漂移区正下方生长一层低电阻率的NBL埋层,形成了部分埋层结构的LDMOS器件,其中S为漂移区上方的LOCOS(localoxidation of Si)长度。经实验测量,得到如图9所示的、不同LOCOS长度下衬底泄漏电流随源漏电压的变化曲线。由图可以看出对于S为3 um的器件,无论其埋层结构如何,泄漏电流都随着源漏电压的增大而缓慢增加,表现出软击穿现象。当S增加到一定程度时,部分埋层结构的LDMOS器件的泄漏电流出现一个突然增加的过程,软击穿得到有效抑制。

  图10为无埋层结构和部分埋层结构的LDMOS器件电流轮廓分布图,在图(a)中,电流主要集中在栅极下的沟道区和源漏注入区内,如此集中的电流会使得器件局部温度过高而损坏。而在图10 (b)部分埋层的LDMOS结构中,由于重掺杂的低电阻率埋层的存在,使得电流几乎全部通过埋层到达漏极,电流分布范围增大,电流密度降低,尤其在静电放电脉冲作用时能够在较大的器件范围内泄放静电放电电流,从而避免了电流集中造成的电流丝现象,提高了器件的静电放电防护性能。

  表1和2分别为TLP实际测量的、不同结构的LDMOS器件的触发电压、触发电流以及HBM和MM耐压值。从表中可以看出,通过选用部分埋层结构,优化LOCOS长度可以使LDMOS器件的静电放电防护性能得到大幅提高,达到工业标准。

3深漏极注入的双RESURF LDMOS器件

  经过上述分析可以得出,当静电放电脉冲到来时,寄生npn管的非均匀导通和电流过度集中引发的热效应已经成为限制LDMOS器件静电放电防护性能的主要因素。因此增大电流通过面积,降低电流密度是LDMOS器件静电防护设计的关键。有研究表明,采用深漏极注入与双RESURF相结合的技术,可显著提升LDMOS器件静电放电防护能力。

  图11为两种不同漏极结构的双RESURFLDMOS器件。图11 (a)为浅漏极注入器件,它通过在NBL埋层上生长一层p.埋层,再将漏极和深n+隔离注入在表面由金属连线短接来实现双RFSURF结构。该结构使得绝大部分源漏电压降落在p一埋层与n型漂移区域及NBL埋层形成的pn结上,从而降低器件的表面电场,提高其耐压特性。与图11 (a)的表面短接方式不同,图11(b)所示器件是在漏极区域下方进行一次深漏极注入n+,通过漏极与NBL埋层在器件内部连接,实现双RESURF结构。

  图12为TIP测试下两种器件结构的泄漏电流情况,其中浅漏极注入的双RESURF器件泄漏电流在寄生npn管完全导通前已经开始缓慢增加,表现出软击穿现象。而深漏极注入结构的泄漏电流只有在寄生npn管进入完全导通的大电流工作区域,源漏电流增加直到器件发生二次击穿时才急剧上升,因此该深漏极注入结构器件有效地抑制了软击穿现象,提高了器件的可靠性。

图13和14分别为浅漏极注入和深漏极注入器件的电流、温度分布仿真曲线。从图13 (a)可以看出,静电放电脉冲电流主要经过n型漂移区和位于漂移区下的p.埋层区域注入漏极,使得寄生npn管的电流集中在漏极边缘很小的范围内。如图13 (b)所示,器件功率在漏极下方的集中使得在静电放电脉冲结束时漏极靠近表面区域温度升高到1 600 K,超过了Si的熔点。然而,图14所示的仿真结果表明,深漏极注入迫使绝大部分静电放电电流垂直通过NBL埋层区域进入漏极,该垂直方向的电流几乎沿着整个器件截面分布,从而大大降低了电流密度和功率密度,使得温度最高点的位置d漏极表面进入NBL埋层和Si衬底附近,其产生的热量也分布在更大的范围内,避免了静电放电脉冲引起的局部温度过高现象,其温度分布如图14(b)所示。

  因此,深漏极注入器件在静电放电脉冲作用下的电流和温度分布更加均匀,器件自加热效应得到有效抑制,从而避免了电流丝现象引起的器件性能退化和电流集中导致的金属接触烧熔,大大提高了LDMOS器件的二次击穿电流,增强了其静电放电防护能力。

4 结语

  本文所述深漏极注入结构在提高器件静电放电防护能力方面有着显著优势。此外,通过添加辅助静电泄放电路的方法,如SCR LDMOS器件和ZenerClamp LDMOS器件,也可显著提升其静电防护能力。

关键字:LDMOS  静电放电  失效原理 编辑:神话 引用地址:LDMOS器件静电放电失效原理

上一篇:LDMOS和VDMOS
下一篇:LDMOS结构/优点

推荐阅读最新更新时间:2023-10-12 20:34

便携式医疗电子及相关保护技术
  便携式医疗电子被许多电子厂商当作下一个掘金点,其中既包括专业的便携式医疗电子设备,也包括家庭和个人的健康护理产品。   便携式医疗电子将在近年内迎来快速发展。首先,全球,尤其是中国,大量人口分布在偏远地区,无法享受到应有的医疗保障,需要有便携式医疗设备在家中实现健康监控。第二,人口老龄化已成为趋势,老年人的很多保健需求可以借助便携式医疗电子在家里完成,随着相关产品的普及,家庭医疗、远程看护必将大大减轻医疗系统的负担。第三,医用的便携式医疗电子设备能大大方便医生的诊断,间接提升医院的效率。   这是一块还未被开发的市场,有很大的增长潜力。在便携式医疗电子市场中,家用电子市场达到65.4%的份额,而且市场呈现加速增长的
[医疗电子]
便携式医疗电子及相关保护技术
Nexperia研制出硅基 ESD 防护器件,系统级鲁棒性高达30kV
分立元件、MOSFET 元件及模拟和逻辑 IC 的专业制造商 Nexperia,宣布针对 100BASE-T1 和 1000BASE-T1 汽车以太网系统推出业界领先且符合 OPEN Alliance 标准的硅基 ESD 防护器件 。 OPEN (One-Pair Ether-Net) Alliance Special Interest Group (SIG) 是由汽车工业和技术供应商组成的非营利联盟,他们相互协作,鼓励广泛采用基于以太网的网络作为汽车联网应用的标准。其工作包括制定 IEEE 和其他国际标准。Nexperia 是 OPEN Alliance SIG 的技术成员,并且采用硅技术为 100BASE-T1 和
[汽车电子]
Nexperia研制出硅基 <font color='red'>ESD</font> 防护器件,系统级鲁棒性高达30kV
ESD保护元件的对比分析及大电流性能鉴定
在人们的日常工作生活中,静电放电(ESD)现象可谓无处不在,瞬间产生的上升时间低于纳秒(ns)、持续时间可达数百纳秒且高达数十安培的电流,会对手机、笔记本电脑等电子系统造成损伤。 对于电子系统设计人员而言,如果没有采取适当的ESD保护措施,所设计的电子产品就会有遭到损伤的可能。因此,电子系统设计中的一项重要课题便是确保使其能够承受ESD的冲击,并继续正常工作。 ESD保护方法 为了给电子系统提供ESD保护,可以从不同的角度来着手。一种方法是在半导体芯片内建ESD保护架构。不过,日趋缩小的CMOS芯片已经越来越不足以承受进行内部2 kV等级的ESD保护所需要的面积。安森美半导体标准产品部亚太区市场营销副总裁麦满权指
[电源管理]
为便携应用选择适当集成EMI滤波及ESD保护方案
      如今的手机等便携设备的尺寸日趋小巧纤薄,同时又在集成越来越多的新功能或新特性,如大尺寸显示屏、高分辨率相机模块、高速数据接口、互联网接入、电视接收等,让便携设备的数据率及时钟频率越来越高。这样,便携设备面临着诸多潜在的电磁干扰(EMI)/射频干扰(RFI)源的风险,如开关负载、电源电压波动、短路、电感开关、雷电、开关电源、RF放大器和功率放大器、带状线缆与视频显示屏的互连及时钟信号的高频噪声等。因此,设计人员需要针对音频插孔/耳机、USB端口、扬声器、键盘、麦克风、相机、显示屏互连等多个位置,为便携设备选择适合的EMI/RFI滤波方案。 常见EMI/RFI滤波器类型及滤波要求       对于EMI/RFI
[电源管理]
为便携应用选择适当集成EMI滤波及<font color='red'>ESD</font>保护方案
系统级 ESD 电路保护设计考虑因素
随着技术的发展,移动电子设备已成为我们生活和文化的重要组成部分。平板电脑和智能手机触摸技术的应用,让我们能够与这些设备进行更多的互动。它构成了一个完整的静电放电 (ESD) 危险环境,即人体皮肤对设备产生的静电放电。例如,在使用消费类电子设备时,在用户手指和平板电脑 USB 或者 HDMI 接口之间会发生 ESD,从而对平板电脑产生不可逆的损坏,例如:峰值待机电流或者永久性系统失效。 本文将为您解释系统级 ESD 现象和器件级 ESD 现象之间的差异,并向您介绍一些提供 ESD 事件保护的系统级设计方法。 系统级ESD保护与器件级ESD保护的对比 IC 的 ESD 损坏可发生在任何时候,从装配到板级焊接,再到终端用户人机互
[电源管理]
系统级 <font color='red'>ESD</font> 电路保护设计考虑因素
ADI推出四款8-kV ESD开关
ADG54xx单通道和双通道开关可在工业、仪器仪表和过程控制应用中确保无闩锁现象。 中国北京——Analog Devices, Inc.(NASDAQ:ADI)今天宣布推出四款8-kV ESD(静电放电)开关,这些产品能够保证工作电压高达±22 Vds或+40 Vss的高压工业应用不发生闩锁现象。ADI的高压ADG5401、ADG5421、ADG5423和ADG5419单通道及双通道开关是其防闩锁系列中的新成员,现在该系列包括从SPSTx1开关到32:1多路复用器的各种配置。闩锁是指一种在关闭电源之前会持续存在的不良高电流状态,它可能导致器件故障。 查看ADG5401、ADG5421、ADG5423、ADG5419产品
[模拟电子]
Littelfuse推出超低电容TVS二极管阵列
通过紧凑型0201倒装或0402封装保护高速数据线。 中国,北京,2014年12月9日讯 - Littelfuse公司是全球电路保护领域的领先企业,宣布推出SP3022系列低电容ESD保护TVS二极管阵列(SPA®二极管)。 这些强健的0.35pF、20kV双向(背对背)离散式TVS二极管可以在不降低性能的情况下,安全吸收高于IEC61000-4-2国际标准最高等级的反复性ESD放电。 存在交流信号时,SP3022系列背对背配置可为数据线提供对称ESD保护。 这些二极管阵列具有超低负载电容(0.35pF),因此最适合保护高速数据线,例如所有HDMI和USB、DisplayPort™、V-by-One™和eSATA的发
[嵌入式]
Littelfuse推出超低电容TVS二极管阵列
LDMOS基站的功率效率突破性提升
2008 年 5 月 16 日 , 恩智浦半导体今天推出 BLC 7G 22L ( S ) -130 基站功率晶体管 , 这是恩智浦应用其业界领先的 第七代 横向扩散金属氧化物半导体 ( LDMOS ) 技术的首款产品 ,专 为高功耗和 Doherty 放大器应用进行了优化。恩智浦的第七代 LDMOS 技术可以实现目前功效最高的 LDMOS 解决方案 , 与上一代产品相比 , 功率密度提高了 20% , 功率效率增长了两个百分点 ,而 Rth 热阻则降低 25% 以上 。 恩智浦 RF 功率产品线市场部门经理 Mar
[新品]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved