改进型差分放大电路
在差分放大电路中,增大发射极电阻Re的阻值,可提高共模抑制比。但集成电路中不易制作大阻值电阻;采用大电阻Re要采用高的稳压电源,不合适。如设晶体管发射极静态电流为0.5mA,则Re中电流为1mA。当Re为10kΩ时,电源VEE的值为10.7V。在同样的静态工作电流下,若Re=100kΩ,VEE的值约为100V。
为了既能采用较低的电源电压,又能采用很大的等效电阻Re,可采用恒流源电路来取代Re。晶体管工作在放大区时,其集电极电流几乎仅决定于基极电流而与管压降无关,当基极电流是一个不变的直流电流时,集电极电流就是一个恒定电流。因此,利用工作点稳定电路来取代Re,就得如右上图所示电路。
恒流源电路在不高的电源电压下既为差分放大电路设置了合适的静态工作电流,又大大增强了共模负反馈作用,使电路具有更强的抑制共模信号的能力。
如右上图所示恒流源电路可用一恒流源取代。在实际电路中,常用一阻值很小的电位器加在两只管子发射极之间,见下图中的Rw。
调零电位器Rw:调节电位器的滑动端位置便可使电路在uI1=uI2=0时,uO=0,Rw称为调零电位器。
为了获得高输入电阻的差分放大电路,可用场效应管取代晶体管,如右上图所示。这种电路特别适于做直接耦合多级放大电路的输入级。通常情况下可以认为其输入电阻为无穷大。其应用和晶体管差分放大电路相同。
关键字:改进型 差分 放大电路
编辑:神话 引用地址:改进型差分放大电路
推荐阅读最新更新时间:2023-10-12 20:36
详解差分信号
我们中的大部分都能直观地理解信号是如何沿导线或走线传播的,即便我们也许对这种连接方式的名称并不熟悉——单端模式。术语“单端”模式将这种方式同至少其它两种信号传播模式区分开来: 差模 和共模。后面两种常常看起来更加复杂。
差模
差模信号沿一对走线传播。其中一根走线传送我们通常所理解的信号,另一根传送一个严格大小相等且极性相反(至少理论上如此)的信号。差分与单端模式并不像它们乍看上去那样有很大的不同。记住,所有信号都有回路。一般地,单端信号从一个零电位,或地,电路返回。 差分信号 的每一分支都将从地电路返回,除非因为每个信号都大小相
等且极性相反以至于返回电流完全抵消了(它们中没有任何一部分出
[测试测量]
电磁流量计测量误差分析
现在科技迅速在发展当中,本文我们为大家深入讲解电磁流量计测量误差分析的应用场合和电磁流量计测量误差分析与目前国内其他产品相比的优势,希望对大家有所帮助。 电磁流量计属于速度流量计的一种, 它利用导电流体在磁场中流动产生的感应电动势推算出流体流量, 可以说电磁流量计的准确与否和能源的合理、有效的利用、贸易的结算息息相关, 因此其计量误差便成了一个非常重要的问题。 一、电磁流量计的原理.. 电磁流量计是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。基本原理是法拉第电磁感应定律, 即导体在磁场中切割磁力线运动时在其两端产生感应电动势,当然, 上式成立是在一定的严格条件下的磁场分布均匀的恒定磁场.. 被测流体的流速轴对称
[测试测量]
经典架构新玩法:用单端仪表放大器实现全差分输出
问:我们可以使用仪表放大器生成差分输出信号吗? 答:随着对精度要求的不同提高,全差分信号链组件因出色的性能脱颖而出,这类组件的一个主要优点是可通过信号路由拾取噪声抑制。由于输出会拾取这种噪声,输出经常会出现误差并因而在信号链中进一步衰减。此外,差分信号可以实现两倍于同一电源上的单端信号的信号范围。因此,全差分信号的信噪比(SNR)更高。经典的三运放仪表放大器具有许多优点,包括共模信号抑制、高输入阻抗和精确(可调)增益;但是,在需要全差分输出信号时,它就无能为力了。人们已经使用一些方法,用标准组件实现全差分仪表放大器。但是,它们有着各自的缺点。 图1.经典仪表放大器。 一种技术是使用运算放大器驱动参考引脚,正输入为共模
[电源管理]
基于Multisim10的负反馈放大电路的研究
负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。在以往的教学中发现,即使教师对负反馈的概念、反馈的类型等都做了全面的分析,但学生掌握得不够好。分析其原因,主要有以下几个方面。首先,因反馈类型较多,如串联、并联反馈;电流、电压反馈;直流、交流反馈及正、负反馈等不同类型的反馈,导致学生概念的混淆和理解的困难,即使通过上实验课,也因教学时间限制不可能将全部反馈类型都进行;其次,实验所需时间较长,加上仪器本身的缺陷,所采集到的数据量较少且误差较大,如用示波器对反馈电路中放大的信号
[模拟电子]
差分放大器,差分放大器是什么意思
差分放大器,差分放大器是什么意思
差分放大器
Differential amplifier 由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。适于作直流放大器。 差分放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路 (ECL, Emitter Coupled Logic) 的输入级。 差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。 很多系统在差分放大器的一个输入
[模拟电子]
使用有源匹配电路改善宽带全差分放大器的噪声性能
自从1999年首次面世以来,宽带全差分放大器(FDA)的单端至差分应用经常将一个接地电阻用作输入匹配电路的一部分,代价是更高的以输入为参考的噪声电压。如果可以去除那个电阻,输入阻抗匹配电路仅由进入求和点的路径确定,那么就有可能得到低得多的以输入为参考的噪声。当输入匹配电路可以通过一个大于1GHz的共模环路带宽保持在很高频率时,这是一个可行的方案。本文将介绍两种方法的设计公式,并比较以输入为参考的噪声对目标增益的影响。 使用全差分放大器实现的单端至差分转换 日益普及的全差分放大器(FDA)支持的更加有用的功能之一是将单端信号源转换为所有现代ADC输入要求的差分输出信号。这些设计可以是直流或交流耦合设计。当采用直流耦合时,需要留意输入
[电源管理]
差分霍尔效应传感器:使未来的两轮车应用更安全、更可靠
在两轮和三轮车辆应用中,对于发动机、变速器和车轮速度等进行控制的电子设备使用正在快速增长,特别是在发展中国家。这一趋势主要由改善全球空气质量,提高燃油效率和车辆安全性等要求驱动。 这些系统的控制需要能够在恶劣环境下工作的可靠的磁传感器和目标,其中常见的挑战是在车辆运行期间存在由电机和线圈引起的共模噪声和杂散场干扰。齿轮磨损、损坏以及目标轮混入铁屑都会导致控制信号的减小或丢失。 车辆控制中使用的两种常见传感器类型是单霍尔和差分霍尔效应传感器。虽然可以使用单霍尔效应传感器,但差分霍尔效应传感器可针对下列各种系统可靠性挑战提供卓越的解决方案。 杂散场 安装公差 气隙突然变化 动态气隙变化 单霍尔与差分霍尔效应传感器对比 单
[汽车电子]
赛卓电子-车规级PWM输出两线制差分式轮速传感器IC:SC9642
车规级两线制轮速传感器IC:SC9642 产品描述: SC9642是一款基于脉冲宽度调制原理(PWM)的两线制电流输出型轮速传感器,适用于检测转动速度和转动方向的ABS系统。传感器不需要外部元件,上电时间快,工作频率范围宽。芯片采用高压 BiCMOS 工 艺,具有高 ESD 和 EMC 防护能力,全温下出色的精度和灵敏度特性使其非常适用于恶劣的汽车电子环境。 主要技术指标: -工作电压4.5~24V, 端口耐压30V;7mA/14mA 电流型输出; -磁偏移矫正范围可达±20mT;工作温度 -40~150摄氏度; -支持速度与方向检测。 独特优势: -动态自矫正技术; -输出端抗电磁干扰技术;
[汽车电子]