集成型温度传感器解决散热难题

最新更新时间:2012-09-10来源: 互联网关键字:集成  温度  传感器  散热 手机看文章 扫描二维码
随时随地手机看文章

随着电子系统越来越朝着多功能、更高性能和更小封装的趋势发展,系统散热问题日渐成为设计环节中必须考虑的因素。系统过热会降低性能,损坏元件或产生安全隐患。为跟踪并降低系统散热而引发的问题,通常需要监控两个参数:持续温度测量和过热警报。

  持续温度测量使处理器可以监测到系统温度的上升或下降,并根据测得的温度采取弥补措施。例如,由于功率放大器(PA)会受到系统升温的影响,因此它可以显示增益的升高。增益升高导致功率放大器使用更大的功率,产生更多热量,继而使用更高的电能,这被称为热逸散。例如,在无线传感器网络应用中,过大的增益会导致电池比预期耗电更快。通过监控温度,处理器可以调节放大器的增益,从而确保功率的耗散与设计者预期相符。

  在系统运行温度超出设置的限制时,处理器会接收到二进制过热警报信号。一个应用范例是当系统中温度即将超出元件的最大运行温度时。此时,处理器可以中止向元件供电,避免系统由于过热而受到损坏。

  分立热敏电阻电路

  用于进行持续温度测量和过热警报指示的传统分离元件电路在传感器元件中使用热敏电阻器(热敏电阻),通常采用负温度系数(NTC)热敏电阻。随着温度的升高,NTC热敏电阻的电阻值降低(图1)。

 

 

  图 1:采用传统热敏电阻的电路。处理器的模数转换器用于采集温度模拟电压(VTEMP)。当温度超出临界值时,数字比较器的输出端会驱动处理器的输入端进行提示。

  电压分频器直接衍生模拟温度信号,作为热敏电阻温度模拟信号的电压电平。RBIAS电阻器能够设置电路增益,并使热敏电阻保持在允许的功率内工作,从而最大限度地减小温度导致的电阻误差。过热警报通过将热敏电阻的输出端与比较器的输入端相连接而产生。参考电压与比较器的另一输入端相连,以设置比较器输出端被激活的电压值(过热电平)。通过采用磁滞反馈回路用于避免比较器在VTEMP等于VREF时来回快速开关。

  但是分立热敏电阻解决方案会存在许多设计问题。而LM57集成模拟温度传感器和温度开关能够解决这些设计问题,并提高系统的性能。

  集成的LM57电路

  LM57不仅集成了分立热敏电阻电路的功能,还改进了其性能。如图2所示,我们可以看到元件数量变少了,但功能却增加了。例如低态跳脱点输出和输入针脚使系统可以在原位置测试LM57的功能。

 

  图2:LM57集成电路应用。处理器的模数转换器用于采集温度模拟电压(VTEMP)。当温度超出临界值时,过热(TOVER)输出端会驱动处理器的输入端进行指示。跳脱点由两个无源电阻器(RSENSE1和RSENSE2)设置,而不是由有效参考端和偏压电阻器设置。

  精确度

  任何温度传感器电路中最重要的测量参数之一是总体电路的精确度(或误差)。在设计分立电路解决方案时,各元件的误差会累加得出测量值的最大总误差。例如,分立热敏电阻电路(图1)中的VTEMP模拟温度输出端将同时受到热敏电阻和电阻器RBIAS的精确度影响。TOVER数字警报的精确度不仅受到VTEMP的精确度影响,还受到比较器、反馈电阻器和磁滞电阻器的固有误差影响。例如,如果使用此电路控制大型HVAC系统,这些误差可能引起大型系统在不需要工作时继续运转,从而导致系统产生过多的功率。

  LM57完全集成(图3),所有组成部分的输入输出都包含在LM57的校对流程中,因此不会产生以上所提到的误差源。同时,系统设计员不需要累加各组成元件的误差,从而得出总误差。LM57能保证VTEMP模拟输出的最大误差为±0.7℃,TOVER警报输出的最大误差为±1.5℃。

 

  图3:LM57集成模拟温度传感器和温度开关的功能框图。

  NTC电路的另一个误差源是VTRIP的误差。最大程度降低这一误差的一种途径是使用高精度参考端。但是,比较器的输入端会收集到来自参考端的噪声。比较器的跳脱点会随着噪声产生的信号电平的变化而不同。LM57采用一种专利技术从而解决了这个问题。用户可以通过选择两个电阻器RSENSE1和RSENSE2的值设置VTRIP的值。LM57使用数模转换器确定跳脱电压范围。只要感应线路中电压在指定范围内,跳脱温度就不会产生变化。这表示LM57感应输入不会受到输入端适量噪声的影响。这还意味着只要电阻器的容差在1%或更低,各电阻器的跳脱点就不会变化。

  线性度和转换噪声

  在传感器测量中获得最大的精确度需要注意量化噪声误差,这是由模拟信号向二进制数据转换产生的误差。模拟信号经过数字化,得出的是一个接近实际测得模拟值的数字值。数字测量的最小增量(LSB)是将模数转换器参考电压除以模数转换器的可数代码数得出的电压。例如,使用2.56V参考电压的8位模数转换器产生的LSB值为2.56V ÷ 28 = 10mV。测得的模拟值和数字值之间的任何差值将称为转换中的误差,这被称为转换噪声或转换误差。例如,如果尝试采集1.384V信号,此信号经数字化获得接近10mV的值,假设达到1.380V,则采样值具有4mV的转换噪声值。如需了解更详尽的转换噪声讨论,请参见National.com网站上的《浅谈模数转换器》(The ABCs of ADCs)一文。

  那么,此噪声在温度误差中意味着什么?答案取决于传感器输出的增益。传感器的增益幅度越大,就越少受到噪声的影响——传感器增益越高,量化噪声产生的误差越小。如图4所示,可以看到在跳脱温度设为100℃时,LM57的VTEMP模拟输出与-10.4mV/℃典型增益值呈现很好的线性关系(实际上,LM57具有4种可能的增益,这取决于选择的跳脱点值,但是本例中我们选择100℃)。这表示每毫伏噪声对温度的影响为0.097℃/mV。同样在100℃的温度下,热敏电阻输出端的1mV噪声将产生1.7℃的误差(本模拟试验中使用NCP15XH103热敏电阻和6.2kΩ偏压电阻器)。

 

  图4:LM57和NTC热敏电阻(Murata NCP15XH103F)的噪声灵敏度比较。

  工作温度范围

  较热敏电阻而言,LM57的另一个优点是具有更宽的可用工作温度范围。如图4所示,LM57可在-50℃至150℃的温度范围中工作。此热敏电阻的额定温度范围是-40℃至125℃,但其可用范围接近-20℃至100℃。由于在此范围内具有线性输出值,因此无需优化电路实现更窄、更高的温度范围;LM57在140℃下具有卓越的精确度和噪声容差。

  设计时间和板空间

  在如今更短的产品开发周期中,集成的LM57可以通过缩短设计时间从而提高价值。LM57只需要使用简易的设计优化方法即可集成在电路中,并与处理器相连。无需元件匹配、考虑序列误差等。

  由于采取单一封装,体积小,从而节省了板空间和生产成本,并提高了质量。如果在分立解决方案中结合多个元件将占用更大板空间,因为各元件间需要保持最小间距。设计每增加一个新元件,在电路中放置该元件的成本就累加到产品成本中。每个附加元件都需要增加一个设备和两个或更多连线,因此在设计中需要考虑更多的问题。

  本文小结

  集成的LM57模拟温度传感器和温度开关不仅结合了传统温度传感器和比较器电路的优点,同时比分立解决方案具备更多的功能和更好的性能。如需改进系统性能并缩短设计时间,LM57是最佳选择。

关键字:集成  温度  传感器  散热 编辑:神话 引用地址:集成型温度传感器解决散热难题

上一篇:车用传感器及其组件解决方法
下一篇:车载无线传感器网络监测系统设计方案

推荐阅读最新更新时间:2023-10-12 20:41

日本TDK收购欧洲ASIC大厂ICsense 强化定制IC设计服务
日本TDK于3月28日宣布,全资子公司TDK-Micronas已与欧洲ASIC大厂ICsense签订全资收购协议。总部位于比利时鲁汶的ICsense是欧洲首屈一指的IC设计公司,其核心业务为ASIC和定制IC设计服务。 ICsense拥有欧洲最大的无晶圆厂IC设计团队,在类比、数字、混合讯号和高压IC设计方面拥有世界一流的专业知识。该公司为汽车、医疗、工业和消费市场开发和提供客户独家的ASIC解决方案。 ICsense的核心专长是传感器和MEMS介面、高压IC设计、电源和电池管理。加入TDK集团后,ICsense将继续为全球现有和新客户开发创新的ASIC。ICsense管理团队将维持不变。 TDK收购ICsense后将
[半导体设计/制造]
北京上半年集成电路(芯片)产品进口同比增29.7%
据中新网北京报道,今年1-7月,北京进出口16853.9亿元,同比增长26.9%。其中,出口3499.2亿元、进口13354.7亿元,进出口、出口同比分别增长26.9%、23.2%。 据介绍,今年,北京地区外贸回暖高于预期,进出口规模和出口规模均创下历史同期最高水平,月度增速已连续五个月反超全国月度增速。其中,出口规模超出2019年同期四分之一,进口恢复至2019年同期水平,且增速持续反超全国3.5个百分点(北京市进口增长27.9%)。 7月当月,进出口2600.6亿元,同比增长31.4%。其中,出口566.7亿元,同比增长57.9%,是全国增速的2.4倍;进口结构持续优化,同比增长反超全国1.2个百分点。进口额2033.9亿元
[手机便携]
MAX66140集成ISO 15693兼容安全存储器
MAX66140在单一芯片集成了1024位具有安全散列算法(SHA-1)质询-响应认证(ISO/IEC 10118-3 SHA-1)的用户EEPROM、一个64位唯一识别码(UID)、一个64位密钥和一个13.56MHz ISO 15693 RF接口。存储器每8个字节构成一个数据块,共包括16个数据块,另外还包括其它三个模块—一个用于密钥,两个用于数据和控制寄存器。除密钥外,每个模块带有一个用户可读的写次数计数器。4个相邻的用户EEPROM数据块构成一个存储器页(第0页至第3页)。集成SHA-1引擎通过器件EEPROM中的数据和64位密钥提供信息认证码(MAC),确保高度安全性,器件的读、写操作均进行对称认证。存储器保护功能包括写
[模拟电子]
人性化的低功耗WIFI智能温控器应用方案
概述 据统计,我国建筑能耗占全国总能耗30%左右,随着人民生活水平的提高,建筑能耗将呈现持续迅速增长的趋势。为了降低建筑能耗、帮助用户节省电费、实现更加人性化的控制,这就要求温度控制器更加的智能。 本方案利用各种传感器、无线WIFI模块接收网络上的天气预报信息以及用户通过网络传送的控制命令来达到智能控制的目的。 红外传感器感应是否有人在家,万一出门忘了关空调,则自动地关闭空调。开车回家的路上,使用者可以用手机遥控家里的空调开始运转。这样就可以在能源消耗最优化的前提下,享受舒适的生活环境。 智能温控器跟踪用户对温度的调整和定制时间表习惯,以及通过网络来获取天气预报。自动帮助用户设定下一星期的温度调整方案。 系统结构
[嵌入式]
半导体式光纤温度传感器的建模、仿真与实验
1 引言 光纤温度检测技术是近些年发展起来的一项新技术,由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中使用等优点而越来越受到人们的重视,各种光纤温度传感器发展极为迅速。目前研究的光纤温度传感器主要利用相位调制、热辐射探测、荧光衰变、半导体吸收、光纤光栅等原理。其中半导体吸收式光纤温度传感器作为一种强度调制的传光型光纤传感器,除了具有光纤传感器的一般优点之外,还具有成本低、结构简单、可靠性高等优点,非常适合于输电设备和石油井下等现场的温度监测,近年来获得了广泛的研究。但是目前的研究还存在一些问题,如系统模型不完善,基础理论尚不系统,产品化困难等。本文对这种传感器进行了详细研究,建立了系统的数学模型,并通过
[工业控制]
半导体式光纤<font color='red'>温度</font><font color='red'>传感器</font>的建模、仿真与实验
车辆散热系统参数测试电路的技术架构
1 引言 车辆的系统散热性是衡量其先进性的一个重要标志,因为车辆的各个部件和系统都存在一个最佳的工作温度区间,在此温度范围内零部件的各项性能指标才能得以保证。目前,我国车辆系统的研制已进入自行研制、自主创新的发展阶段,由于缺乏实车试验测试条件,加上车辆工作环境的复杂性,导致有效的实车试验数据严重缺乏,试验周期长,数据可复现性差,无法向工程设计部门提供准确有效的实车试验数据,严重影响车辆总体技术的进一步发展。因此,本文着重于在不改变车辆现有结构和性能的前提下,采用单片机控制系统、传感器技术、数据存储技术、实时时钟技术,研制一套能实时检测和记录车辆散热系统动态参数的电子电路。 2 系统总体构架设计 该散热系统参数测试电路由上位微
[单片机]
车辆<font color='red'>散热</font>系统参数测试电路的技术架构
浅析汽车速度传感器工作原理及应用案例
前言 汽车的启动、加速、、减速、停止运行等速度的控制是汽车控制系统里面一种永恒不变的话题,它不仅仅是一个汽车选型的参数,还体现一个汽车的性能和制造水平,在汽车电子技术中的关键部件,同时也是研究的核心内容之一。 本文主要是简单介绍汽车速度传感器是什么,并结合它的分类来分析各种汽车速度传感器的工作原理,并举例相应的汽车速度传感器应用案例来深入的学习和掌握这门技术。 汽车速度传感器简介 我们知道汽车传感器的作用就是将一些我们需要检测的信号转换成电信号并输出,让我们可以通过反馈回来的信号来判定系统现在的状态。汽车速度传感器就是这样一种设备,它通过检测电控汽车的车速并将具体的车速信号转换成电信号传输给汽车的核心控制电脑,控制
[嵌入式]
汽车BMS电流传感器在电池管理系统中的应用
基于磁通门技术的汽车BMS电流传感器是一种高性能的电流测量器件,适用于新能源汽车的电池管理系统。它能够实时监测电池包的充放电电流,并通过向BMS发送信号进行控制和保护。该传感器具有精度高、功耗低、抗干扰能力强、测量稳定性好等优点,是越来越高要求的BMS电流测量的最佳选择。 BMS产品 参数特性 1、高精度:0.5% 2、线性度:0.1% 3、低温漂,低零漂,耐高温 4、测量范围:±300A/ ±500A/±1500A 5、电源:8 – 16V 6、孔径:24.2mm 7、输出:CAN总线 8、工作温度:-40 - 85℃ 9、适配连接器:TE MPN 1473672-1 10、高可靠性:多重自检,多重硬件保护,CRC校验保证可
[嵌入式]
汽车BMS电流<font color='red'>传感器</font>在电池管理系统中的应用
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved