运算放大器必知必会:基本特性与设计因素须知

最新更新时间:2012-11-01来源: 互联网关键字:运算放大器 手机看文章 扫描二维码
随时随地手机看文章

运算放大器是典型的模拟集成电路。可以说有了运算放大器才算有了模拟集成电路、其历史也就是模拟集成电路的历史。运算放大器的设计开发不像其外特性那样直观明了;外特性有细微差异的运算放大器内部差异之巨大也往往出乎意料之外;投入资源开发有细微差异的运放是工程需求、工程需求背后的商业利益追求、以及知识产权创新的需要。这从圣邦微电子公司近年开发的运放产品中可以一窥端倪。

  微功耗运算放大器

  大幅度地减少功耗对应用设计带来的影响不止是节能。如果平均功率需要从mA量级下降到了μA量级甚至μA以下,则供电方案可以有很大不同,使一些原本不方便、不能实现的应用得以实现。例如图1所示的电源电路可以驱动一个以微功耗运算放大器为检测部分、配合储能和间歇执行部分的电路,利用单条电源线的控制负载。一些电源开关盒中实际上只是一条线路,对这些开关升级,例如升级成遥控调光或者接近开关时需要为控制电路供电。负载没有接通时,通过允许流过微量电流供电。如果这个电流较大,会导致负载部分启动或间歇启动;对于轻负载,例如3~5W发光二极管灯尤为显著。实际工程案例利用SGM8041的微功耗特性解决了这一问题。

  

(电子工程专辑)

 

  图1: 利用微功耗运放改变供电电路。

  图1所示的电路设计工作在交流电的电压范围内,但其元件中只有R(以及执行部件和电流互感器T的原副边之间)承受较高电压,其余元件耐压均以参考齐纳管的击穿电压为参考。电流互感器T用于在较大功率负载的应用,在接通期间给控制电路供电;如果负载较小,接通期间也可以通过延迟开启角度取得一定的电压差给控制电路供电。

  低功耗产品已很普及,如常用的TLC27L和MCP6041;后者静态电流仅600nA。SGM8141/2为更为极端的微功耗运算器产品,其静态电流仅为350nA,Voffset则控制在最大不超过2.5mV。利用SGM8141/2可以在系统深度休眠时提供连续参数监测,用于唤醒或者异常触发。也用于信号自供电或利用能量收集(例如震动、热和光)的设计中。

  微功耗运算放大器设计的挑战在于,如何利用尽可能少的电路实现在全输入范围内保持小而稳定的失调电压。微功耗运放无法利用复杂电路对温度变化补偿和严格根据共模锁定输入节的偏置,失调补偿依赖于参数补偿设计和精细的版图设计。图2是圣邦微功耗运放产品的失调电压分布统计。

  

(电子工程专辑)

 

  图2: 圣邦微功耗运放的失调电压分布。

  比较器是常态处于类饱和态的模拟集成电路,仅在比较阈值附近一个微小的区间表现为线性。无论在高速场合还是低速场合,对比较器的需要常被忽视和误解。现实中不乏把放大器当作比较器使用的成功工程案例,真实地反映了对比较器的需求的变化。比较器无论是参数优化还是实际结构实现都跟运算放大器不同;比较器在输出翻转前或者后的传输增益要小,以防止自激;触发翻转后的上升或者下降沿不受前级的爬升率的影响。

  传统工程上对比较器的需要大都被取代或者弱化,如快速渡过逻辑器件的逻辑模糊区、精确幅度甄别和抑制在甄别阈值附近的不定状态输出等。主要因为ADC的普及使用和逻辑I/O的设计改进;无论是在逻辑I/O电路中还是利用运放的轻度正反馈滞回,都可以有效避免逻辑不确定性,而定时抖动特性一直不是比较器的强项。

  圣邦的设计改进重点在于减少比较器的耗电。微功耗运放用作比较器时在饱和状态工作电流有所增加,退出饱和需要较长时间,比较器则没有这些问题。如图3所示,SGM8701系列微功耗的工作电流稳定在300nA附近的极低水平。

  

(电子工程专辑)

 

  图3: SGM8701 系列比较器工作电流。

  极低功耗比较器可以用于需要潜伏或深度睡眠状态的应用,例如在待机期间持续监测电池电压和连续监视等待唤醒呼叫等。

无交越失真运算放大器

  与BTL和C类放大器的交越失真概念不同,无交越失真运放是相对于有输入结构相关交越失真的满幅输入CMOS运放提出的。CMOS运算放大器具有输入阻抗高、工作电流低、易实现满幅输出和不需要区别单双电源设计等突出优点,但是其输入部分栅极与源极之间需要较大压差,共模输入电压范围小,限制了低工作电压使用。如图4所示的互补双差分对结构被用于CMOS运放以允许满幅输入。这种互补双差分对结构保证无论共模电压是接近正电源,还是接近负电源,至少有一个差分对可以工作。工程现实无法保证这两个差分对有完全一致的失调电压。输入共模电压变化使互补双差分对交替工作引起输入相关交越失真。

  

(电子工程专辑)

 

  图4: 引起交越失真的互补双差分对输入结构。

  与输出图腾柱结构的输出交替引起的交越失真不同,输入相关的交越失真无法通过提高开环增益予以改善。SGM8942通过对输入部分偏置结构的改变避免了使用双互补差分对结构,是一种新型的无交越失真满幅输入/输出型运算放大器。

  输入相关交越失真仅发生在同相放大应用,如需要高输入阻抗放大器的驻极体输出缓冲、压电换能器的输出缓冲、PT/CT电量传感器输出的缓冲和电位差计输出缓冲等。交越失真生成寄生频谱,或产生虚假微扰动。SGM8942成功地应用于微弧检测、瞬时功率因数测量和电化学扩散电势检测等对微扰敏感的应用中。

  高精度运算放大器

  从本征特性看,CMOSFET的稳定性和噪声特性,尤其是1/f噪声,以及响应速度均不及双极型晶体管;但其高输入阻抗、低偏置电流、低耗电和结构紧凑等优势双极型器件难以企及。CMOS产品出现以来,改善其噪声、稳定性和速度的努力从来没有中断过。除了少数特别的应用场合,CMOS运放已取代了双极型运放成为主力。例如SGM8551系列高精度运放可保证小于20μV的失调电压和小于20nV/°的温漂,各方面都超过了传统的高精度运放,例如OP07,以及同类的LMV2011。SGM8551已成功用于6位半精度的过程校验仪表。

  高精度运算放大器的对应用工程意义明了、毋庸赘叙,其设计工程的挑战则比较特别;高精度运放设计是专利集中的领域,很多电路方案和布线方案受到保护;新设计要在保护和利用的原则下创新。圣邦的高精度运放产品设计是业内最新数据模型和部分创新的结合。

  与在高精度测量放大系统中方案灵活多变不同,例如相关双采样方案、斩波调制放大方案和斩波跟踪方案等等,高精度运算放大器的实现方案局限于精密跟踪补偿和交替自稳零两类基础方案。

  参考图5,交替自稳零方案的原理与斩波跟踪放大器类似。信号通道上的第一级被分为两个几何分布完全一致的两组;除了切换瞬间,总有一组在通过信号,保证了信号是被近似连续传送和放大的;自稳零校准则是交替进行的。不在传递信号的一组的失调被馈入调零通道,调节偏置使失调为零。

  

(电子工程专辑)

 

  图5: 交替自稳零的原理示意图。

高电压运算放大器

  在工业现场或者类似恶劣条件的场合,采用可直接工作在较高电压的运放有利于提高可用率和执行力。只是提高工作电压对设计容限的改进是有限的;事实上大多数早期的双极型运放可工作在较高电压下,但不能在低电压下工作。现代意义下的高压运放需要高适应性,包括大动态工作电压范围,满幅输入/输出,抗高共模/差模和具备短期过压宽限。以SGM8291为例,其工作电压范围是4.5V~36V,共模和差模均输入允许到电源电压,电源短期过压可超过40V。

  现代意义下的高压运放是一个较新的运放品种,例如TI也只是在近期开始推广其OPA171系列的高压运放。这些高压运放全部具有大动态、低电流的特点,以JFET或CMOS作为输入,普遍采用BCD混合结构;其特性优势是双极型高压运放无法抗类比的。高压运放的结构与低压运放的结构不同,如输入节要在大得多的共模电压范围内保持稳定的失调电压,输出节要承受大的栅-漏(或基-集)电压。SGM8291在全电压范围内失调不超过0.9mV并允许输出长期短路。

  图6用来解释如何实现这些特性所需要的结构差异的一个示意方案(此示意图并不暗示圣邦使用了这一结构)。其中CC1~CC3恒流源需要利用双极型的本征恒流特性稳定输入差分对的偏置;A采用CMOS取得高增益;T1、T2采用DMOS实现高耐压。低压运放不需要这些组合。

  

(电子工程专辑)

 

  图6: 解释高压运放结构差异的示意图。

  开发高压运放、完善工业产品链的社会意义大于开发者的直接经济意义。尽管高压运放对工业应用来讲是不可或缺的,但实际上,其应用空间被低压结构系统不断挤占。其一是因为在大多系统中信号最终被馈送到或者最初来自低压的数字处理电路,低压系统已具备系统级高设计容限;其二是外围电路改进可利用低压电路取得类似高压器件的容限,分享低压元件选择性大、供应量好和价格低的红利。但是有些应用场景注定需要高压运放,图7示意了在输入侧和输出侧适合使用高压运放的若干情况。

  

(电子工程专辑)

 

  图7: 若干需要高压运放的情况。

  本文小结

  半导体集成运算放大器从60年代开发面市,历经半百沧桑到今天还能见到不断有新的产品推出,见证了人类对自然深入探究和提升自我的不断追求。近些年国内出现了若干家像圣邦一样以模拟集成电路开发推广为主要业务的新半导体公司,对拓展应用和推动市场竞争做出贡献;本文介绍的圣邦公司产品的特性均可与已知高性能产品的规格齐平。在成熟的应用中,包括运放在内模拟电路被越来越多地集成到了单片系统中,同时随着认识的深入和处理能力的加强、也不断有新的要求需要新的产品来满足。

关键字:运算放大器 编辑:神话 引用地址:运算放大器必知必会:基本特性与设计因素须知

上一篇:CMMB终端芯片大比较:几种典型调谐器分析评测
下一篇:三电平输入简易检测方法

推荐阅读最新更新时间:2023-10-12 20:43

如何正确地选择运算放大器
现代电子工业的趋势是集成更多的功能到尽可能小巧的外形中,这已经不是什么秘密。移动电话就是这样的实例。当今许多生产商将MP3播放器、数码相机甚至卫星电视功能集成在移动电话里。过去几年,该市场已经取得了巨大的发展,并且仍在快速扩展。 这些产品的设计周期通常较短,测试比实际设计耗费更长的时间(设计大约需要4个月,测试需要6个月)。为此,设计师必须谨慎选择器件,以避免对最终的产品进行反复修改和导致延误。 下文将重点说明一些有用的设计技术、简短的计算和通用的评估方法,以帮助设计师更好地进行评估。 在便携电子领域,设计师基于多种因素(尺寸、成本和性能),利用他们的专业知识和最佳判断来选择器件。但这些因素通常需要进行权衡,设计
[模拟电子]
ADI推出高性能低成本的CMOS运算放大器
    Analog Devices, Inc.宣布针对中国市场发布全新的低成本、高速 CMOS 运算放大器ADA489系列。与其它供应商提供的产品相比,ADA4891系列能够帮助设计师以更低的成本和更低的功耗实现同样的高速性能。与此同时,ADI 在高速运算放大器产品领域的行业绝对领导地位以及对于中国市场的长期承诺和投入,也确保了中国客户能够得到业界最好的质量保证和技术支持。针对中国市场的需求,ADI 还将弥补市场同类价格产品特定数据不全以及质量报告不完整的缺陷,向中国客户提供完整的数据表以及质量报告。此次推出的 ADA4891系列共有两款产品,分别是 ADA4891-1(单路)、ADA4891-2(双路)。     在 AD
[模拟电子]
更宽的工作电压,更高精度—新型45V零漂移运算放大器
宽运算范围和片内EMI滤波最大程度上降低了越来越高的高频干扰影响 无线功能(例如支持Wi-Fi®和蓝牙的应用)的快速发展正在让我们的生活和工作环境面临越来越多的高频噪声。为了让设计师能够提供更好的性能,同时能更轻松地管理越发复杂的环境,美国微芯科技公司(Microchip Technology Inc.)推出 MCP6V51 零漂移运算放大器 。这款新器件通过提供宽工作电压范围和片内电磁干扰(EMI)滤波器,在实现超高精度测量的同时,还能最大程度降低越来越高的高频干扰影响。 工业控制和工厂自动化的发展导致需要监控的传感器数量越来越多,MCP6V51放大器旨在让各种传感器产生准确、稳定的数据。MCP6V51的自校正零漂
[测试测量]
更宽的工作电压,更高精度—新型45V零漂移<font color='red'>运算放大器</font>
运用负反馈模型分析实际运算放大器电路
   0.引言   大多数运算放大器电路都是工作在深度负反馈状态,我们在分析此类电路时常采用运算放大器的理想化模型(即利用虚短虚断技术),而事实上这种理想化模型忽略了运算放大器开环增益,输入输出电阻的非理想化给运算放大器电路造成的影响。所以我们用一种更加近似的方法一等效负反馈模型分析运算放大器电路。    1.运算放大器电路的等效负反馈模型   分析图1所示的同相放大器,这是一个典型的负反馈系统,将它等效成图2所示的负反馈电路的基本结构。其中α为该放大器的前向增益,称为该运算放大器电路的开环增益。β为该反馈网络的增益,称为该运算放大器电路的反馈系数。为了求出B,除去全部输入源,切断运算放大器并用它的输入电阻rd和
[模拟电子]
LT1468低噪声低失真运算放大器及其应用
    LT1468是Analogue Linear Technology公司新设计的单个可折叠式共射型运算放大器。利用LT1468可以克服其它类型放大器带宽窄、转换速率低和建立时间等缺陷。LT1468运算放大器可应用于16位系统,且能有效抑制滤波器和仪器本身精度所带来的失真。 1 LT1456简介 1.1 特点     LT1468是一个可用于16位系统的单个运算放大器,其精度和速度均已实现了最优化设计。LT1468的工作电压为15V,最大输入失调电压为±75μV,反相端的最大偏置电流为10nA,同相端为40nA,最小直流增益为1V/μV,其主要技术参数如表1所列。 表1 LT1468主要技术参数
[应用]
如何将双电源的电路转换成单电源电路
我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别
[电源管理]
运算放大器 单通道,双通道抑或是四通道
在需要多个运算放大器的设计中,设计师的第一反应是使用双通道或四通道运算放大器,然后根据PCB版图设计考虑来分配各个部分。在许多情况下这样做没什么问题,但对某些电路来说,谨慎地选择单通道、双通道或四通道运算放大器,并且进行恰当的划分可以提高电路性能。本文将讨论一些常见的电路,借此阐述两个单通道或一个双通道运算放大器在什么情况是正确的选择。
[模拟电子]
<font color='red'>运算放大器</font> 单通道,双通道抑或是四通道
单电源运算放大器的设计考虑
摘要:为了减小产品尺寸、降低成本、延长电池寿命、提高电池供电系统的性能,设计人员加快了低电压、单电源系统的开发、应用趋势。这种趋势对消费者是有益的,但却使得为特定应用选择合适的运算放大器变得复杂。 通常,单电源工作与低压工作相同,将电源由±15V或±5V变为单5V或3V,缩小了可用信号范围。因此,其共模输入范围、输出电压摆幅、CMRR、噪声及其它运算放大器的限制变得非常重要。在所有工程设计中,常常需要牺牲系统在某方面的性能,以改善另一方面的性能。下面关于单电源运算放大器指标的折中讨论也说明了这些低压放大器与传统高压产品的不同。 输入级考虑 输入共模电压范围是设计人员在确定单电源运算放大器时应该考虑的首要问题,需要强调的是满摆
[电源管理]
单电源<font color='red'>运算放大器</font>的设计考虑
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved