∑-ΔADC应用笔记

最新更新时间:2012-11-25来源: 互联网关键字:∑-ΔADC  应用笔记 手机看文章 扫描二维码
随时随地手机看文章
引言

  许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040等ADC的高动态范围、同时采样以及多通道优势。本文介绍了MAX11040的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。

        本应用笔记旨在帮助设计人员在高性能、多通道数据采集系统(DAS)设计中优化工业传感器与高性能ADC之间的连接电路。以电网监测系统为例,本文说明了使用MAX11040 Σ-Δ ADC的优势以及如何选择适当的架构和外围器件,优化系统性能。

  高速、Σ-Δ架构的优势

  图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

  

基于MAX11040的DAS在电网监控中的应用

 

  图1. 基于MAX11040的DAS在电网监控中的应用

  从图1可以看到,采用两片MAX11040 ADC可以同时测量交流电的三相及零相的电压和电流。该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。数据流被送入内部数字滤波器处理,消除高频噪声。处理完成后可以得到高达24位的分辨率。

  MAX11040为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。

  MAX11040能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围;积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC;独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。

  另外,MAX11040集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。输入端的阻/容(RC)滤波器结合MAX11040的数字低通滤波器,大大降低了MAX11040输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。表1列举了MAX11040的部分特性,关于MAX11040数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料。

  表1. MAX11040 ADC的关键指标 PartChannelsInput range (VP-P)Resolution (Bits)Speed (ksps, max)SINAD (1ksps) (dB)Input impedance

  MAX110404±2.22464117High, (130kΩ, approx)

  电力线应用对ADC性能的要求

  电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。而MAX11040的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040较低的输入量程以内,电路如图2所示。

  连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。

  对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。利用MAX11040的真差分输入大大降低共模噪声的影响。

  

MAX11040在电力线监控典型应用中的原理框图

 

  图2. MAX11040在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。通道4接口电路采用差分设计,通道1采用单端设计。

  PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源;为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。MAX11040的输入阻抗与时钟速率、ADC输入电容有关。连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。

  R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << RIN)。

  

对于单端设计,图2中MAX11040通道1的输入电压VIN(f),可以利用式1计算:

  

式1.
(式1)

 

  式中:

  VTR是CT和PT变压器的输出电压。

  RTR是变压器的等效阻抗。

  R1、R2构成电阻分压网络。

  RIN是MAX11040的输入阻抗。

  R2llRIN是R2和RIN的并联阻抗。

  C3为输入旁路电容。

  f是输入信号频率。

  VIN(f)是MAX11040的输入电压。

  可以利用类似方法进行差分输入设计。

  为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。电容应选取高精度陶瓷电容或薄膜电容。最好选择信誉较好的供应商购买这些元件,例如Panasonic®、Rohm®、Vishay®、Kemet®和AVX®等。

  MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

  

基于MAX11040EVKIT的开发系统框图

 

  图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

  函数发生器产生的±5V信号连接到MAX11040的通道2,而另一函数发生器产生的±10V信号连接到MAX11040的输入通道1。电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

  电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040。有关精度指标的详细信息,请参考MAX11040数据资料。

  表2. 图3中的电阻和旁路电容计算 VTR

  ±VP-PRTR

  (Ω)R1

  (Ω)R2

  (Ω)RIN

  (Ω)C3

  (µF)f

  (Hz)VIN

  ±VP-PVADC

  (VRMS)Calibration

  factor-KCALCalibration

  factor error (%)

  Calculations for nominal VTR and standard components (nominal) values

  105033209091300000.1502.112681.49394.733010.70

  550249018201300000.1502.070261.463952.415160.99

  Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment

  9.86350 ± 10%3320 ± 1%909 ± 1%130000 ± 15%0.1 ± 10%502.098721.4838994.6999120

  4.93250 ± 10%2490 ± 1%1820 ± 1%130000 ± 15%0.1 ± 10%502.061511.458332.39140

  050 ± 10%2490 ± 1%1820 ± 1%130000 ± 15%0.1 ± 10%5000.00048NANA

  表2列出的计算值均来自式1的计算结果和图3定义的精确测量。表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的KCAL系数,计算公式如下:

  校准系数KCAL按照式2计算:

  KCAL = VTRMAX/(VADCMAX - VADC0)(式2)

  式中:

  VTRMAX是输入最大值,分别代表±5V或±10V输入信号。

  VADCMAX是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VTRMAX。

  VADC0是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。

  KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

  KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的KCAL之间存在1%左右的误差。

  所以,只是依靠理论计算还不足以支持实际要求;如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

  表3所示结果验证了½ FSR输入信号的测量。利用高精度HP3458A万用表测量数据,利用式2中的校准系数KCAL得到ADC测量值和计算值。

  表3. 验证½ FSR输入信号对应的测量结果 GeneratorGeneratorMAX11040CalculationVerrRequirements

  Nominal signal (½ FSR)VTR_m - signal measured by HP3458AVIN measured by ADCVTR_C = VIN × KCAL(VTR_M - VTR_C) × (100/VTR_C)IEC 62053

  (VP-P)(VRMS)(VRMS)(VRMS)(%)(%)

  Channel 1: ±5.0003.48920.742593.490126-0.0265440.2

  Channel 2: ±2.5001.74710.73071.747384-0.0162650.2

  表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040测量值和KCAL处理、计算得到的数值。

结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

  

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

 

  图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

  测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。

  结论

  MAX11040等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。

关键字:∑-ΔADC  应用笔记 编辑:神话 引用地址:∑-ΔADC应用笔记

上一篇:PPTC保护元件介绍及应用
下一篇:专用晶圆加工工艺实现高性能模拟IC

推荐阅读最新更新时间:2023-10-12 20:44

具微微安培输入的缓冲型 18 位 8 通道 ADC 缩小解决方案尺寸
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 4 月17 日 – 亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司推出 18 位 8 通道同时采样逐次逼近型寄存器 (SAR) ADC LTC2358-18,该器件具集成的微微安培输入缓冲器。在电路板空间稀缺的现状下,LTC2358-18 通过去掉通常在驱动非缓冲型开关电容器 ADC 输入时所需的前端信号调理电路,显着地节省了空间和成本。每个通道合起来节省了 3 个放大器、6 个电阻器和两个电容器组件,8 个通道总共可节省 88 个组件,从而节省了 BOM 成本和大量电
[半导体设计/制造]
四 ARM9(S3C2440)的ADC和触摸屏控制——理论知识
概述 10 位CMOS ADC(模/数转换器)是一个8 通道模拟输入的再循环类型设备。其转换模拟输入信号为10 位二 进制数字编码,最大转换率为2.5MHz A/D 转换器时钟下的500 KSPS。A/D 转换器支持片上采样-保持功能和掉电 模式的操作。 触摸屏接口可以控制/选择触摸屏X、Y 方向的引脚(XP,XM,YP,YM)的变换。触摸屏接口包括触摸屏引 脚控制逻辑和带中断发生逻辑的ADC 接口逻辑。 触摸屏接口模式 1. 普通转换模式 单转换模式是最合适的通用ADC 转换。此模式可以通过设置ADCCON(ADC 控制寄存器)初始化并且通过读写 ADCDAT0(ADC 数据寄存器0)就能够完
[单片机]
电能计量芯片Sigma-Delta ADC降采样滤波器设计(一)
智能电表(smart meter)作为智能电网的终端计量仪器,不仅需要能够精确计量用户的用电信息,而且还需各种通信功能,如RS485.红外.电力线载波等,以实现自动化远程管理.因此,智能电表在整个智能电网的建设中起着关键性作用.而对于智能电表的核心---电能计量专用芯片(Electrical Measurement Unit,EMU)也提出了更高的要求.目前计量芯片的模数转换电路基本上都采用Sigma-Delta 型,而降采样滤波器是Sigma-Delta ADC 的核心组成部分,因此,对降采样滤波器的研究具有十分重要的意义. 在Sigma-Delta ADC 中,功耗主要集中在降采样滤波器 .而滤波器的功耗主要由乘法器决定,因此
[电源管理]
电能计量芯片Sigma-Delta <font color='red'>ADC</font>降采样滤波器设计(一)
ADC时钟输入考虑
为了充分发挥芯片的性能,应利用一个差分信号驱动ADC的采样时钟输入端(CLK+和CLK−)。 通常,应使用变压器或电容将该信号交流耦合到CLK+引脚和CLK−引脚内。 这两个引脚有内部偏置,无需其它偏置。 高速、高分辨率ADC对时钟输入信号的质量非常敏感。 为使高速ADC实现出色的信噪比(SNR),必须根据所需的输入频率认真考虑均方根(rms)时钟抖动。 rms时钟抖动可能会限制SNR,哪怕性能最佳的ADC也不例外,输入频率较高时情况会更加严重。 在给定的输入频率(fA)下,仅由孔径抖动(tJ)造成的SNR下降计算公式如下: SNR = 20 × log10 (2 × π × fA × tJ) 公
[模拟电子]
<font color='red'>ADC</font>时钟输入考虑
ADC0832数字电压表数码管显示(示例程序)
;******************************************************************************** 描述: ADC0832数字电压表数码管显示 调节ADC0832旁边的电位器,数码管显示 ADC0832 转换值的大小 ;******************************************************************************* ******************************
[单片机]
DAC和ADC助力射频通信
     随着精密的光刻技术不断在一定芯片面积上实现更多的晶体管,数字技术水平也在不断提升。这些进步将对射频和微波设计带来巨大影响。例如,高速模数转换器(ADC)就为软件定义无线电(SDR)架构的实现铺平了道路,SDR被广泛运用于从蜂窝基站到军用无线电等众多应用中。由于有了高性能数模转换器(DAC),高精度、宽动态范围的复杂波形才得以生成。   从性能方面看,ADC和DAC是最多样化的电子元件产品之一。可从时钟速率、频率范围、位分辨率、噪音水平,功耗和动态范围等各项性能指标来甄选一款转换器。转换器产品包括面向音频应用的低频24位分辨率转换器、面向控制应用的较低分辨率、较低频率转换器,以及面向医疗、军事、无线通信应用的高分辨率、
[网络通信]
STM8学习笔记---ADC多通道采样遇到问题及解决方法
在ADC多通道采样时遇到了一个问题,费了半天劲才找到原因。在此将分析过程记录下来。 这是STM8S003单片机5个通道ADC采样程序,在主函数中依次读取各个通道的ADC采样值。首先单独测试一下每个通道的值。 每个通道单独测试采样值 ch2 = 623, ch3 = 0,ch4 = 2,ch5 = 1023, ch6 = 408。 下面开始多通道采样,ch2和ch3同时采样。 采样结果正常。 ch2、ch3、ch4同时采样。 采样结果正常。 ch2、ch3、ch4、ch5同时采样。 采样结果不正常,和上面的采样结果比较,好像采样值被整体下移了一位。 在试试所有通道同时采样 采样的值
[单片机]
STM8学习<font color='red'>笔记</font>---<font color='red'>ADC</font>多通道采样遇到问题及解决方法
STM32的ADC基本配置
(1)模/数转换工作于单通道还是多通道模式 (2)工作于单次还是连续模式。 (3)外部触发转换还是软件使能转换。 (4)数据对齐方式,右对齐还是左对齐。 (5)A/D转换的通道数目。 (6)设置A/D通道的转换顺序及采样时间。其中转换时间为 T.conv=采样时间+12.5个周期 (7)⑥使能DMA启动传输 ⑦使能ADC ⑧校准ADC,ADC的校准用到以下代码: /*重置ADC1的校准寄存器关/ ADC_ ResetCal ibration( ADC1); /*获取ADC重置校准寄存器的状态*/ while(ADC_ GetResetCal ibrat ionStatus(ADC1)); ADC_ StartCal ibr
[单片机]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved