如何成为出色的模拟工程师(一):电磁干扰(EMI)

最新更新时间:2013-05-04来源: 互联网关键字:模拟  工程师  电磁干扰  EMI 手机看文章 扫描二维码
随时随地手机看文章
所谓的电磁干扰,广义来说,一切进入信道或通信系统的非有用信号,均称之为电磁干扰。电磁干扰已经深入到我们日常的生活。例如,观看电视时,附近有人使用电钻、电吹风等电器,会使电视画面出现雪花点,所声器里发出剌耳的噪声……等等。这类现象人们早已司空见惯、习以为常了,但是电磁干扰的危害却远不止如此。事实上,电磁干扰已使民航系统失效、通信不畅、计算机运行错误、自控设备误动作等,甚至危及人身安全。因此如何有效的抑制电磁干扰成为模拟工程师必须具备和考虑的因素,在这里小编为大家详述了什么是电磁干扰,如何有效的抑制电磁干扰。

  电子线路与电磁干扰的分析

  现代的电子产品,功能越来越强大,电子线路也越来越复杂,电磁干扰(EMI)和电磁兼容性问题变成了主要问题,电路设计对设计师的技术水平要求也越来越高。电磁干扰一般都分为两种,传导干扰和辐射干扰。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。因此对EMC问题的研究就是对干扰源、耦合途径、敏感设备三者之间关系的研究。

  美国联邦通讯委员会在1990年、欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保他们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性。

  目前全球各地区基本都设置了EMC相应的市场准入认证,用以保护本地区的电磁环境和本土产品的竞争优势。如:北美的FCC、NEBC认证、欧盟的CE认证、日本的VCCEI认证、澳洲的C-tick人证、台湾地区的BSMI认证、中国的3C认证等都是进入这些市场的“通行证”。

  电磁感应与电磁干扰

  很多人从事电子线路设计的时候,都是从认识电子元器件开始,但从事电磁兼容设计实际上应从电磁场理论开始,即从电磁感应认识开始。

  一般电子线路都是由电阻器、电容器、电感器、变压器、有源器件和导线组成,当电路中有电压存在的时候,在所有带电的元器件周围都会产生电场,当电路中有电流流过的时候,在所有载流体的周围都存在磁场。

  电容器是电场最集中的元件,流过电容器的电流是位移电流,这个位移电流是由于电容器的两个极板带电,并在两个极板之间产生电场,通过电场感应,两个极板会产生充放电,形成位移电流。实际上电容器回路中的电流并没有真正流过电容器,而只是对电容器进行充放电。当电容器的两个极板张开时,可以把两个极板看成是一组电场辐射天线,此时在两个极板之间的电路都会对极板之间的电场产生感应。在两极板之间的电路不管是闭合回路,或者是开路,在与电场方向一致的导体中都会产生位移电流(当电场的方向不断改变时),即电流一会儿向前跑,一会儿向后跑。

  电场强度的定义是电位梯度,即两点之间的电位差与距离之比。一根数米长的导线,当其流过数安培的电流时,其两端电压最多也只有零点几伏,即几十毫伏/米的电场强度,就可以在导体内产生数安培的电流,可见电场作用效力之大,其干扰能力之强。

  电感器和变压器是磁场最集中的元件,流过变压器次级线圈的电流是感应电流,这个感应电流是因为变压器初级线圈中有电流流过时,产生磁感应而产生的。在电感器和变压器周边的电路,都可看成是一个变压器的感应线圈,当电感器和变压器漏感产生的磁力线穿过某个电路时,此电路作为变压器的“次级线圈”就会产生感应电流。两个相邻回路的电路,也同样可以把其中的一个回路看成是变压器的“初级线圈”,而另一个回路可以看成是变压器的“次级线圈”,因此两个相邻回路同样产生电磁感应,即互相产生干扰。

  在电子线路中只要有电场或磁场存在,就会产生电磁干扰。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其它系统或本系统内其他子系统的正常工作。

具体到“电磁干扰”,可以按照下面所列七类进行划分:

  按照发生源划分

  按照传播路径划分

  按照辐射干扰的产生原因划分

  按照不同设备的工作原理划分

  按照发生的频率划分

  按照频率范围划分

  不同的交流电源

  而且可以在每一类中进一步分类。根据发生源可将干扰细分如图1~图4。

  图1 电磁干扰源类别

  图2自然干扰源类别

  图3人为干扰源类别

  图4 内部干扰源类别

  从受干扰方面来看,外来噪声是外界干扰,内部噪声是机内噪声。

  除此之外,噪声按传递途径分类如图5所示。

  图5 按照干扰传输路径分类

  干扰传播的途径如图6所示。有通过电源线、信号线、地线、大地等途径传播的“传导干扰”,也有通过空间直接传播的“空间干扰”。

  这些噪声并不独立存在,在传播过程中又会出现新的复杂噪声。

  图6 干扰传播路径

  造成数字电路工作不正常的干扰可分为:①电源干扰,②反射,③振铃(LC共振):上冲、下冲,④状态翻转干扰,⑤串扰干扰(相互干扰、串音),⑥直流电压跌落。

  造成开关电源质量下降的干扰分为:①出现在输出入端子上的干扰(电流交流声,尖峰脉冲噪声,回流噪声);②影响内部工作的干扰(开关干扰,振荡,再生噪声)。

  按发生的频率分为:突发干扰,脉冲干扰,周期性干扰,瞬时干扰,随机干扰,跳动干扰。

  造成交流电源质量下降的干扰分为:高次谐波干扰,保护继电器,开关的震颤干扰,雷电涌,尖峰脉冲干扰,喷射环电弧,瞬时浪涌。

  将来可能会将下面这些项目归入到交流干扰内:瞬时停电,瞬时下降,频率变化,电压变化,高次谐波失真。

  另外还干扰按频率分为:低频干扰,高频干扰。

  如上所述,干扰可以分成很多类别,这些干扰既产生于电气电子设备,又干扰电气电子设备,造成设备的故障和停用,带来经济和人员伤害。为了使各种设备能够互不干扰,正常工作,应运而生了EMC技术。

  简而言之,EMC是“不发干扰,不受干扰”。现在国内外都在研究开发EMC技术,并应用于电气电子设备的制造中。

关键字:模拟  工程师  电磁干扰  EMI 编辑:神话 引用地址:如何成为出色的模拟工程师(一):电磁干扰(EMI)

上一篇:FCI推出全新无源铜缆和QSFP有源光缆组件
下一篇:如何成为出色的模拟工程师(二):电磁干扰(EMI)

推荐阅读最新更新时间:2023-10-12 20:45

MathWorks发布新品 有助于设计ADAS及自动驾驶系统
中国北京 – 2017 年 3 月 27 日 – MathWorks今日推出了包含一系列 MATLAB 和 Simulink 新功能的 Release 2017a (R2017a)。值得一提的是,R2017a包含一款名为 Automated Driving System Toolbox 的新产品,其有助于工程师设计、仿真和测试 ADAS 以及自动驾驶系统。除此之外,R2017a 还包含对 86 款其他产品的更新和补丁修复。 MATLAB 产品系列更新包括: MATLAB 实时编辑器中的交互式图形更新,包括标题、标签、图例和其他注释,以及将实时脚本输出复制到其他应用程序的功能 oheatmap 绘图函数,用于实现数据的可
[物联网]
模拟串口硬件机制写的程序
本程序是模拟串口硬件机制写的,使用时可设一定时中断,时间间隔为1/4波特率,每中断一次调用一次接收函数, 每中断4次调用一次发送函数,不过.对 单片机 来说时钟并须要快.要知道9600的波特率的每个BIT的时间间隔是104us.而单片机中断一次压栈出栈一次的时间是20us左右(标准的51核12M晶体)这样处理时间就要考虑清楚了.呵呵.以下程序是放在定时器中断程序函数内的 //接收部分 sbit JieShou_D= ;//定义接收端口 uint8 DingShiJiShu,JieShou_h;//定时计数,接收 缓冲器 uint16 JieShou_T;//接收临时寄存器 bit KaiShi,JieShou_b;/
[单片机]
工程师STM32单片机学习基础手记(4):用PWM实现荧火虫灯(四)
补充一些硬件知识      SEGGER 给出的Jlink引脚图      开发板上的连接图      标准的JTAG连接图,供对照参考。   调试方式既可以用JTAG,也可以用SW。   以下是转载:   SWD 仿真模式概念简述   先所说 SWD 和传统的调试方式有什么不一样:   首先给大家介绍下经验之谈:   (一): SWD 模式比 JTAG 在高速模式下面更加可靠。 在大数据量的情况下面 JTAG 下载程序会失败, 但是 SWD 发生的几率会小很多。 基本使用 JTAG 仿真模式的情况下是可以直接使用 SWD 模式的, 只要你的仿真器支持。 所以推荐大家使用
[模拟电子]
<font color='red'>工程师</font>STM32单片机学习基础手记(4):用PWM实现荧火虫灯(四)
D类放大器及EMI抑制
前言 在日新月异的多媒体时代,便携式电子产品,如智能电话、PDA、MP3、PMP、DSC、DVC、NB等多媒体产品,对声音质量的要求越来越严格。另外,由于此类产品为电池供电,除了要求音质的再突破外,也要求整体效率的提升,以达到高效、低功耗的设计目标。 此类产品的音频模块中,除了输入端的信号源和输出端的喇叭或耳机外,音频放大器是一个非常重要的角色。目前广泛用于便携产品的音频放大器有AB类和D类两种。通常,AB类放大器能够提供好的音质,但效率欠佳,耗电较大;而D类放大器具有高效、低温升效应和高输出功率等特点。 理论分析 AB类放大器的工作原理类似于线性调节器,效率差而且需考虑散热问题;D类放大器的工作原理类似开关调节器,具有较高效率,
[嵌入式]
射频衰落模拟器在信号衰落测试中的应用
1引言   决定基站发射机与移动接收机之间的通信质量的关键因素是信号的传播信道。信号在空中传播期间,会存在衰落现象。这意味着如楼宇、山坡或者树木等障碍物都有可能吸收或反射信号,对其幅度和相位产生明显影响。由于反射、衍谢和本地散射作用,在基站和接收机之间可能形成多个信号传输路径(见图1)。这种所谓的多径传播现象,会导致接收机接收到同一信号的不同副本,副本各自的传输路径长度不同、抵达接收机的时间也不同,且它们的幅值和相位也各异。对于移动式接收机,还可能存在额外的挑战,例如最大和最小信号强度以及多普勒频移等。 图1 传输过程中的信号衰落现象   众所周知,对于诸如移动电话等无线设备应该在真实条件下进行测试,以确
[安防电子]
射频衰落<font color='red'>模拟</font>器在信号衰落测试中的应用
传韩厂研发 EMI 屏蔽技术,6 月上线整合
封测厂当心!韩国存储器大厂三星电子和 SK 海力士,研发业界首见的涂布式(Spray)的“电磁波屏蔽”(EMI shielding)技术,打算自行吃下此一封装程序,省下外包费用。 韩媒 Investor 和 etnews 5 日报导,去年苹果 iPhone 7 芯片开始采用电磁波屏蔽技术,当时韩厂选择把此一封装程序外包。如今消息人士透露,三星电子和 SK 海力士都研发出涂布式技术,比传统方法更有投资效益、成本也有优势,两厂正在试产,预计 6 月起与产线整合。 不具名的内情人士说,韩厂克服困难,研发出新技术量产,未来不必外包电磁波屏蔽封装程序,就能供应 NAND Flash 芯片给苹果。据悉苹果将进行测试,决定是否用于今年的新 iP
[测试测量]
ADI:分布式光伏技术为模拟IC市场带来无限可能
近4年以来,我国分布式光伏应用呈现爆发式增长。有权威数据显示,2013年国内光伏新增装机约10GW,其中分布式光伏占30%。随着国家对分布式光伏的导向日益明确,工业市场对分布式光伏的需求也变得愈加强烈。预计2015年国内光伏分布式新增装机比例将提高到60%以上,由此看来,国内分布式市场大环境已经形成,未来国内分布式光伏市场前景可期。 面对如此广阔的市场拓展空间,作为一直致力于新能源和高效工业技术开发的高性能信号处理解决方案供应商,ADI公司对分布式光伏在国内市场的发展动向也给予很高的关注。在此,我们有幸邀请到ADI公司市场经理张松刚先生来对中国分布式光伏产业现状与发展前景发表个人看法。     AD
[模拟电子]
ADI:分布式光伏技术为<font color='red'>模拟</font>IC市场带来无限可能
e络盟调查显示,工程师开始信任人工智能遴选元器件
最新调查数据显示,大多数工程师开始信任人工智能有助于为新设计选择元器件 中国上海,2023年9月4日——安富利旗下全球电子元器件产品与解决方案分销商e络盟最近进行的一项调查结果显示, 86%的受访者相信,人工智能在为他们的新设计选择元器件的过程中发挥了一定作用,这部分受访者中又有超过四分之一(86%中占比23%)表示他们“完全”信任人工智能选择的元器件。 调查结果表明,尽管工程师们认为人工智能未来将在协助选择元器件方面发挥越来越大的作用,但他们对人工智能系统中可能出现的偏差表示担忧。一些设计师认为,人工智能在选件方面发挥的作用“有限”,仍需要亲自检验与审核。大多数受访者认为,人工智能与他们是互补关系,并对此表示接受。
[物联网]
e络盟调查显示,<font color='red'>工程师</font>开始信任人工智能遴选元器件
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved