基于FPGA的通用位同步器设计方案(一)

最新更新时间:2013-11-05来源: 互联网关键字:FPGA  位同步器 手机看文章 扫描二维码
随时随地手机看文章

本文主要是先阐述传统Gardner算法的原理,然后给出改进后的设计和FPGA实现方法,最后对结果进行仿真和分析,证明该设计方案的正确、可行性。

  0 引言

  数字通信中,位同步性能直接影响接收机的好坏,是通信技术研究的重点和热点问题。通信系统中,接收端产生与发送基带信号速率相同,相位与最佳判决时刻一致的定时脉冲序列,该过程即称为位同步。常见的位同步方法包括滤波法和鉴相法。滤波法对接收波形进行变换,使之含有位同步信息,再通过窄带滤波器滤出,缺点是只适用于窄带信号。最为常用的位同步方法是鉴相法,包括锁相法和内插法两种。锁相法采用传统锁相环,需要不断调整本地时钟的频率和相位,不适合宽速率范围的基带码元同步。而内插法则利用数字信号的内插原理,通过计算直接得到最佳判决点的值和相位。

  Gardner算法即是基于内插法的原理,通过定时环路调整内插计算的参数,从而跟踪和锁定位同步信号,该算法的优点在于不需要改变本地采样时钟,可以适应较宽速率范围内的基带信号,因而具有传统方法不可替代的优势。Gardner算法的实现方法,为算法的应用提供了基础。Farrow结构非常适合实现Gardner算法的核心,即内插滤波器部分,其优点是资源占用较少,且滤波器系数实时计算,便于内插参数调整。定时误差检测,但在定时误差检测时需要信号中存在判定信息,并且对载波相位偏差敏感。不足进行了改进,提出了GA-TED(Gardner Timing Error Detection)算法,其优点是不需要预知判定信息,且独立于载波同步,并且适合FPGA 实现。改进的Gardner 算法,并将其应用于M-PSK 系统。提高了Gardner 算法的抗自噪声能力,即降低了对本地时钟的要求。

  本文基于FPGA 平台并采用Gardner 算法设计,其中,内插滤波器采用Farrow 结构,定时误差检测采用GA-TED算法。同时对传统Gardner算法结构进行了改进,使环路滤波器和NCO的参数可由外部控制器设置,以适应不同速率的基带码元,实现通用的位同步器的设计方案。此外,本设计方案还对FPGA 代码进行了优化,节省了大量硬件资源。最后进行了仿真和分析,给出了仿真结果,证实了该方案的可行性。

  1 传统Gardner 算法与改进

  1.1 传统Gardner算法基本原理

  传统Gardner算法结构如图1所示。

  传统Gardner算法结构如图1所示。

  在图1中,输入的连续时间信号x(t) 码元周期为T,频带受限。在满足奈奎斯特定理的条件下,接收端采用独立时钟对x(t) 进行采样。内插滤波器计算出内插值y(k),送至定时环路进行误差反馈和参数调整,并与控制器输出的位同步脉冲BS一起送往解调器的抽样判决器。

  定时环路包含定时误差检测、环路滤波器和控制器。定时误差检测提取插值时刻和最佳判决时刻的误差;该误差经环路滤波器滤除高频噪声后送给控制器;控制器计算插值时刻(即为位同步信号的2倍频)和误差间隔。插值时刻和误差间隔用于调整内插滤波器的系数,使插值时刻尽可能与最佳判决点同相,最终实现位同步信号的提取。

  1.2 改进的Gardner算法结构

  从上节可以看出,传统Gardner算法无法满足较宽速率范围基带信号的位同步要求。为实现该要求,本设计在FPGA 平台的基础上,对算法实现结构进行了改进,改进结构如图2所示。

  图2 改进的Gardner算法

  图2中,内插滤波器采用Farrow结构的FIR 滤波器实现,滤波器系数实时计算;定时误差检测采用独立于载波且采样点较少的GA-TED 算法;环路滤波器、内部控制器可由外部控制器设置参数,基带码元速率变化时,相应参数可以随之变化。因此,本设计可以满足位同步器的通用性要求。

  该同步器工作过程如下:外部控制器根据基带码元速率设置相应参数,通过外部控制器接口将控制、地址和数据信号分别送往分频器、环路滤波器和内部控制器。时钟电路分别提供采样时钟和FPGA 时钟,FPGA工作时钟在片内通过分频器产生所需频率的时钟,供FPGA 各模块使用。输入连续时间信号x(t) 经由独立时钟控制的ADC 进行采样,转换为8 位数字信号送至FPGA 内,符号化后变为有符号数字序列,送入内插滤波器模块。内插滤波器根据输入信号的采样值和内部控制器给出的参数μk,在每个插值时刻kTi 计算出最佳判决点的内插值y(kTi)。定时误差检测计算出误差μτ (n),输出至环路滤波器。环路滤波器依据当前的参数设定,滤除噪声并将误差信息送给内部控制器。内部控制器以NCO为核心,根据处理后的误差信息和设定的频率字参数调整插值时刻kTi,使之尽可能接近最佳判决时刻,并输出位同步脉冲BS,同时计算出误差间隔μk 送给内插滤波器,进行内插值计算,最终完成定时信息的恢复。

2 FPGA设计

  2.1 整体结构设计

  根据图2的算法结构,FPGA设计采用模块化方式,整体结构的顶层图如图3所示。

  从图3可以看到,该设计包含分频器(DIV_FRE)、符号化(SYM)、内插滤波器(INTERPOLATION)、定时误差检测(TED)、环路滤波器(LPF)、内部控制器(INTER_CTL)和外部控制器接口的时序电路(EXTER_CTL)共7个模块。其中,分频器由片外晶振提供时钟输入,分频后为片内其他模块提供相应时钟。其中码元时钟的分频系数可由外部控制器通过接口进行设置。符号化是将A/D采样产生的无符号数转换为有符号数,以便后续模块进行带符号的运算。

  外部控制器接口的时序电路将外部控制器送来的控制信号(ALE和RD)、地址信号(P2.0、P2.1)和数据信号(P0口)、转换为FPGA 内分频器、环路滤波器和NCO的使能信号和参数,实现对位同步器各参数的设置。

  分频器、符号化和外部控制器接口模块实现较为简单,不再赘述。而内插滤波器、定时误差检测、环路滤波器和内部控制器的实现较为复杂,且本设计通过采用相应算法和改进结构,实现了位同步器的通用性。本文将详细阐述这些模块的设计。

  图3 FPGA程序设计整体结构顶层图

  2.2 模块详细设计

  2.2.1 内插滤波器设计

  内插滤波器是完成算法的核心,它根据内插参数实时计算最佳判决点的内插值,即:

  内插滤波器是完成算法的核心,它根据内插参数实时计算最佳判决点的内插值,即:

  式中:mk 为内插滤波器基点索引,决定输入序列中哪些采样点参与运算,它由插值时刻kTi 确定;μk 为误差间隔,决定了内插滤波器的冲激响应系数[1].kTi 和μk 的信息由内部控制器反馈回来。

  本设计的内插滤波器采用基于4 点分段抛物线多项式的Farrow结构实现。将式(1)变换为拉格朗日多项式,即令:

  本设计的内插滤波器采用基于4 点分段抛物线多项式的Farrow结构实现。将式(1)变换为拉格朗日多项式,即令:

  根据式(2)和(3),内插滤波器程序实现结构如图4所示。

  从图4可以看到,该结构由1个移位器、5个触发器、 8个相加器、2个乘法器组成,比直接型FIR节省10个乘法器、4个相加器的资源。其中,除以2的运算采用数据移位实现,避免使用除法器。输入的8位数据 x,计算后得到10位的内插值y 输出。由于内部所有寄存器经计算后,均采用最小位数,有效地减少了Logic Elements资源的占用。

  Farrow结构实现图

关键字:FPGA  位同步器 编辑:神话 引用地址:基于FPGA的通用位同步器设计方案(一)

上一篇:携手TSMC 赛灵思稳猛打制程牌
下一篇:基于FPGA的通用位同步器设计方案(二)

推荐阅读最新更新时间:2023-10-12 20:51

基于FPGA的SPWM变频系统设计
由于脉宽调制技术是通过调整输出脉冲的频率及占空比来实现输出电压的变压变频效果,所以在电机调速、逆变器等众多领域得到了日益广泛的应用。 而电磁法作为一种地球物理探测的有效方法,已经广泛地应用于矿藏勘探、地质灾害预测等领域。电磁法仪一般包括发射机和接收机两大部分。现阶段,电磁法仪器的发射机部分一般直接采用等宽PWM技术,其电流谐波畸变率较大,电压利用率不高,效率很低。 本文利用FPGA技术,根据SPWM自然采样法原理,设计了应用于电磁法仪的发射机的SPWM系统。该系统应用到现有的电磁法仪器中,与原来的PWM产生的效果进行比较,得到良好的效果。 1 SPWM技术原理 SPWM信号的原理为:用一组等腰三角形波与一个正弦波比较,其交点作
[电源管理]
基于<font color='red'>FPGA</font>的SPWM变频系统设计
数字电路设计方案中DSP与FPGA的比较与选择
数字信号处理技术和大规模集成电路技术的迅猛发展,为我们设计数字电路提供了新思路和新方法。当前数字系统设计正朝着速度快、容量大、体积小、重量轻的方向发展。DSP和FPGA技术的发展使这一趋势成为可能和必然。 和计算机一样,数字信号处理的理论从60年代崛起以来,到80年代DSP产生,它飞速发展改变了信号处理的面貌。今天DSP已广泛应用在语音、图像、通讯、雷达、电子对抗、仪器仪表等各个领域。DSP起了十分关键的作用,成为数字电路设计的主要方法。 二十世纪80年代以来,一类先进的门阵列——FPGA的出现,产生了另一种数字电路设计方法,具有十分良好的应用前景。基于FPGA的数字电路设计方式在可靠性、体积、成本
[嵌入式]
基于ARM和FPGA的智能小车监控系统
0 引言     智能小车是机器人研究领域的一项重要内容。它集机械、电子、检测技术与智能控制于一体。在各种移动机构中,智能小车的轮式移动机构最为常见。轮式移动机构之所以得到广泛的应用,主要是因为容易控制其移动速度和移动方向。智能小车可以适应不同环境,不受温度、湿度等条件的影响,完成危险地段、人类无法介入等特殊情况下的任务。一般的智能小车操作控制复杂、功能单一、不能远程重构。     本文介绍的智能小车可移动视频监控系统,以“飞思卡尔杯”智能小车竞赛提供的车模装置为基础,利用ARM芯片S3C2440A控制图像采集、网络传输、速度采集干扰小的模块,利用FPGA芯片控制电机驱动、舵机控制、电量采集干扰大的模块,当上位机通过I
[嵌入式]
基于FPGA原型设计 能为您做些什么?
作为基于 FPGA 原型方法的拥护者,有人可能会认为我们只片面地看到了这种方法的优点,而对其缺陷视而不见。但那绝非我们的本意。我们这本《基于 FPGA 的原型方法手册》旨在全面揭示基于 FPGA的原型的利弊,因为最终我们并不想看到有人本来可以使用其他方法更好地达到目的(比如说用基于System C的虚拟原型),却行进在这种方法的漫漫征途上。 让我们来更深入地研究一下基于FPGA原型方法的目的和局限性,以及其对于系统级验证和其他目的的适用性。把重点始终放在原型项目的目的上,让我们在平台、IP 使用、设计导出、调试及其他设计方面更容易地做出决策。这样,我们就能够通过分析世界上其他原型设计团队的案例,从他们的
[嵌入式]
基于<font color='red'>FPGA</font>原型设计 能为您做些什么?
Adaboost算法的FPGA实现与性能分析
Adaboost 算法是Freund 和Schapire 于1995 年提出的,全称为Adaptive Boosting。它是 Boosting 算法的改进,意为该算法通过机器训练与学习不断自适应地调整假设的错误率,这 种灵活性使得Adaboost 算法很容易与实际应用联系起来。2001 年,微软研究院的P.Viola 提出了基于Haar 特征的Adaboost 算法 ,创造性地将积分图的概念引入到人脸检测的特征 计算当中,由于此算法使用了大量尺寸不一的矩形作用来表征人脸。并且该算法中用以检测 人脸的分类器是采用的级联结构,按照由弱到强的顺序组织的,其优点在于按照统计概率, 在图像检测的一开始就能够将大部分不包含人脸的区域排除在
[嵌入式]
Adaboost算法的<font color='red'>FPGA</font>实现与性能分析
SmartScope - 重塑示波器
SmartScope是一款在Kickstarter上成功募得启动资金的基于FPGA平台的开源仪器产品,我们将它在Kickstarter上公布的产品信息展示出来,介绍这款产品的架构、功能以及市场定位等,同时出于对投资者负责任的态度,这里也列出了SmartScope这款产品的一些风险和挑战,让大家对此产品有较全面地了解。 世界首款100MS/s开源示波器产品,可配合iPad、Android和PC使用。Arduino和树莓派开发者的必备工具。 SmartScope将3种高端仪器集成为一款智能移动设备,与此前只有高端实验室才能配置不同,SmartScope让每个人都可以拥有一个私人的实验室。 作为一台双通道100MS/s示波器
[测试测量]
基于FPGA的汽车视频和图形控制系统设计
LCD显示器真是无处不在,在家庭、超市、体育馆以及汽车内你都可以见到它们的身影。无疑车载LCD显示系统是增长最快的市场。增长的动力包括:不断下降的显示器价格、不断提升的用户体验、更多的产品性能以及车内消费类产品的集结。 典型的图形显示系统一般都是利用标准的特殊应用标准处理器(ASSP)或者定制的特殊应用集成电路(ASIC)作为控制器来构建的。但汽车图形设计师在利用这些器件构建系统时遭遇到了不小的麻烦,其中包括:较短的产品生命周期,基于PC的系统总线接口,无法适应新标准和新显示器类型等。所有这些问题都限制了设计在其它应用中的重用可能性。 图1给出了车载图形/视频系统的一个典型实例。图的左侧列出了用于驱动图形系统的一些不同输入
[嵌入式]
英特尔分拆FPGA业务,国产发展几何?
10月4日,正值假日期间,一则消息引爆了芯片圈,英特尔在其官网宣布,将剥离其可编程解决方案部门(PSG),预计将于2024年1月1日开始作为独立业务运营,预计将在发布2024年第一季度财务报告时将PSG作为一个独立的业务部门报告。在未来两到三年内,英特尔打算为PSG进一步IPO,并可能与私人投资者一起探索机会,以加速业务的增长,英特尔保留多数股权。 英特尔执行总裁Sandra Rivera将担任PSG的新任首席执行官,目前他是英特尔数据中心和人工智能集团(DCAI)的总经理。在此期间,Rivera 还将继续担任 DCAI 的职务,直到英特尔找到替代人选。 回顾2015年,英特尔斥资167亿美元收购了当时的Altera公司,
[嵌入式]
英特尔分拆<font color='red'>FPGA</font>业务,国产发展几何?
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved