温度系数可正可负设定的温宿补偿用电压电路图

最新更新时间:2014-01-14来源: 互联网关键字:温度系数  温宿补偿 手机看文章 扫描二维码
随时随地手机看文章

温度系数可正可负设定的温宿补偿用电压电路图

关键字:温度系数  温宿补偿 编辑:神话 引用地址:温度系数可正可负设定的温宿补偿用电压电路图

上一篇:超声波清洗机电源主电路
下一篇:外部电压控制恒流值的恒流电路图

推荐阅读最新更新时间:2023-10-13 11:02

理解功率MOSFET的RDSON温度系数特性
许多资料和教材都认为,MOSFET的导通 电阻 具有正的温度系数,因此可以并联工作。当其中一个并联的MOSFET的温度上升时,具有正的温度系数导通 电阻 也增加,因此流过的电流减小,温度降低,从而实现自动的均流达到平衡。同样对于一个功率MOSFET器件,在其内部也是有许多小晶胞并联而成,晶胞的导通电阻具有正的温度系数,因此并联工作没有问题。但是,当深入理解功率MOSFET的传输特性和温度对其传输特性的影响,以及各个晶胞单元等效 电路 模型,就会发现,上述的理论只有在MOSFET进入稳态导通的状态下才能成立,而在 开关 转化的瞬态过程中,上述理论并不成立,因此在实际的应用中会产生一些问题,本文将详细地论述这些问题,以纠正传统认识的局
[模拟电子]
带曲率补偿、工作电压1.2 V、可调带隙基准电压电路
l 与温度无关的基准 与温度无关的电压或电流基准在许多模拟电路中是必不可少的。如何产生一个对温度变化保持恒定的量?假设有正温度系数的电压V1和负温度系数的电压V2,这两个量以适当的权重相加,那么结果就会显示出零温度系数。选取a和b使得aV1/ T+bv2/ T=0,可以得到具有零温度系数的电压基准,VREF=aV1+bV2。 上述假设提供了一个可行的方法实现与温度无关的电压基准,就是分别找到正温度系数的电压和负温度系数的电压。 1.1 负温度系数电压 双极晶体管的基极一发射极电压VBE或者pn结二极管的正向电压,具有负温度系数。根据已推导的VBE温度系数表达式 : 式(1)给出了在给定温度T下VBE
[电源管理]
可以设定正、负温度系数温度补偿电压发生电路
电路的功能 在设计电子电路时,应做到电路的各种性能不随环境温度的变化而改变,但实际上,当性能要求高时,往往还存在温度漂移问题。另外,在有传感器的电路中,传感器还有固有的温度特性,如果不进行补偿,有时会无法使用。 本电路可以产生与周围温度成正比的电压,如把它加到一部分温度特性不好的电子电路中,便可对电路的温度系数进行补偿。本电路可补偿的温度系数从负到正,并有连续可变的特点。 应用时应注意:本电路只适用于温度特性为线性的电路。如果用于高增益传感器,可用电阻把本电路的输出分压后再输入电路中。 电路工作原理 人们都知道,硅二极管的正向压降VF随温度而变,在常规应用时并不希望二极管有这种特性。但
[工业控制]
可以设定正、负<font color='red'>温度</font><font color='red'>系数</font>的<font color='red'>温度</font><font color='red'>补偿</font>电压发生电路
PT100温度变送器的正温度系数补偿
温度是非常重要的物理参数,热电偶和热敏电阻(RTD)适合大多数高温测量,但设计人员必须为特定的应用选择恰当的传感器,表1提供了常用传感器的选择指南。 RTD具有较高的精度,工作温度范围:-200°C至+850°C。它们还具有较好的长期稳定性,利用适当的数据处理设备就可以传输、显示并记录其温度输出。因为热敏电阻的阻值和温度呈正比关系,设计人员只需将已知电流流过该电阻就可以得到与温度成正比的输出电压。根据已知的电阻-温度关系,就可以计算出被测温度值。 电阻值随温度的变化称为“电阻的温度系数”,绝大多数金属材料的温度系数都是正数,而且许多纯金属材料的温度系数在一定温度范围内保持恒定。所以,热敏电阻是一种稳定的高精度、并
[传感技术]
广泛应用的负温度系数热敏电阻
你是否想过:婴儿取暖器、自动空调系统、光纤路由器、自动调温浴盆等有什么相同之处?答案是它们都有一种关键部件:负温度系数热敏电阻。 热敏电阻是一种电阻值对温度敏感的电阻器件,在温度变化时,它的电阻值会按照预期的规律来变化。一般来说,它的电阻会随着温度的上升而减少。在某些热敏电阻作为电路保护元件的应用中,会使用正温度系数的热敏电阻,但在温度控制、温度补偿等应用中,则是广泛地使用负温度系数热敏电阻。 负温度热敏电阻的特性 负温度系数热敏电阻的基础材料一般都是金属氧化物的混合物。热敏电阻的稳定性、电阻特性、电阻温度特性都可以通过改变电阻材料的化学成分和改变处理过程中的参数来进行控制。这样,就有各种不同特性的热敏电阻可供选择。再
[半导体设计/制造]
正负温度系数热敏电阻的检测方法
与万用表测电阻的大多数方法一样,在使用指针式万用表检测正温度系数热敏电阻好坏情况时,我们需要将万用表调到R×1挡,具体的操作步骤可分两步。进行常温检测(室内温度接近25℃)时,首先将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。 对热敏电阻的加温检测是在常温测试正常的基础上进行的,当使用上文中介绍的万用表测电阻好坏办法检测该热敏电阻正常时,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如果是,说明热敏电阻正常,若阻值无变化则说明其性能变劣,不能继
[测试测量]
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved