AGC中频放大器设计

最新更新时间:2006-08-30来源: 电子元器件应用关键字:中频  电容  放大器 手机看文章 扫描二维码
随时随地手机看文章

概述

  FD05型AGC中频放大器模块是用于通讯设备的具有AGC(自动增益控制)功能的中波频段小信号放大器,主要为散射凋制、解凋分系统配套。它可将微弱的中频小信号通过外部可变的控制电压放大为一个所需要的功率输出,其中心频率为70 MHz。

  该产品的主要指标如下:

控制电压:Vcon=0~3V

电源电流:Icc≤300 mA

输出电压:Vo=0.1~2V

输出最大增益:KM≥60 dB

可控增益范围:Avr≤55 dB

中心频率:fo=68~72 MHz

频带宽度:BW=10~16 MHz

带内平坦度:Fm≤±2 dB

该产品的环境可靠性指标如下:

电源电压范围:+12V±5%(典型值+12V)

外壳工作温度范围:一40~+85℃

存储温度范围:一55~+125℃

  此外,该产品采用双列直插模块式,外型尺寸不大于(66.5×46.8×15mm,适用于SJ20668—98微电路模块总规范,产品可以每四个一组保持相同的线性控制电压。

设计方案的确定

  根据模块的功能要求及环境要求,设计时首先初步确定了电路模式,并绘制出电路原理图,然后进一步分析原理框图中所需的元器件,并借助EDA仿真来模拟分选元器件,以基本实现电路功能。

  根据方案的设计,利用计算机平面化没计制板,以厚膜工艺组装,确定的主要工艺流程如图1所示。

程序设计和电路原理

◇设计程序

  首先可根据电路功能和该产品各工作部位的要求构画出原理框图和工艺流程,然后细化每一功能所需的元器件和辅助元件,并降额冗余选择,保证元器件质量的可靠性。

◇电路工作原理

  H-FD05模块的内部功能框图如图2所示。图中中频输入信号经隔离电容、匹配网络放大后,由带通滤波器滤除其它杂波,冉经匹配放大,然后通过三级AGC电压控制放大,最后经末级放大隔离输出(直流隔离),使之达到60dB增益的中频输出。考虑到噪声和纹波的干扰,AGC控制电压加了一级LC滤波网络,各级之间均有隔离电容对直流进行隔离,三级AGC电压放大均由PIN微波二极管整形缓冲,+12V电源加到模块内,各级均有滤波电容对供电电源进行净化,三级AGC放大均备有微调电容以消除信号振荡和调整线性增益。

◇方案的论证和评审

  根据该电路的原理、依据和工艺,可由相关专家对电路原理的信号流程,每个元器件的规格型号,尺寸进行认真的分析,对一些有争议的部位或元器件进行一定的修正。滤波器一般应外接,以便于带宽调整,使其电路比较完善,也便于后续工作的实施。

研制过程

◇元器件的选取

  根据电路原理应选择可靠元器件,并在集成电路中选择满足需要的功能。N1、N2 前级放大选用高精射频放大器,N3、N4和N5选用高稳定度中频放大集成电路,N6末级大放选用低温度系数的表贴中频功放,并要求使用温度范同要宽,以满足工作的可靠性。电阻均采用1%高精度厚膜电阻,功率电阻均匀分布,以保证高低温及振动冲击的稳定性;PIN微波二极管选用耐压高、特性一致、结电容小、全表贴型,并且配对使用;电容均采用高可靠的独石电容,电源滤波电容采用高稳定的X7R和超陶电容相结合,以加强滤波效果;调谐整形电容选用高稳定度的 NP0片电容,保证宽温下工作的低失真;电感选用高稳定的微型表贴电感,以确保小尺寸下的低温升和线性输出。

◇结构选择

  依据产品的小尺寸、轻重量、工作温度范围宽等要求,同时考虑到国产成熟的配套能力和单位为贯标生产线的现有标准结构,该产品开始定为38线金属壳焊封。由于输出端子和外部调谐整形、测试端比较多,并且要求引出端有一定的忍性,故选用双列排式引线结构,电源、输入、输出端子分开排列,并增加了引出端子的接地屏蔽,使之达到用户提出的要求。

◇改进

  为提高产品特性,使之准确反应放大器的功能,针对降低壳体尺寸和提高精度等要求,除考虑集成电路的应用范围外,还对此采取了相应的转换措施,重点解决表贴元器件的尺寸,使之壳体尺寸降为28线平行封焊,壳体尺寸从最大的66.5×46.8× 15mm降至41×28×6mm;另外还加强了PIN二极管的一致性配对(每块三个,四块一套共l2只)从而提高了产品的精度。

设计技术难点及解决措施

◇结构布局

  该AGC中频放大器的中心频率为70 MHz(属高频范围),其结构布局非常重要。在电路设计初期,虽然根据引线尺寸结构和电路流程进行了精细布局,缩短走线,靠近各引线端,控制线宽和线间距。但电路仍不理想,在信号衰减60dB时就被埋没,信号为0dB、10dB时就有自激振荡,通过大量的实验和消自激电容的调整以及穿插接地,使之勉强在宽增益下达到输出要求。但在壳体尺寸进一步降低时,根据这些数据整理和前后级屏蔽地线分级隔离,重新布局绘制平面厚膜电路,尤其是相邻强弱信号的地线屏蔽使其对微弱信号的干扰减少。另外,输入、输出分别设计在陶瓷基板的两头对角,内部电路流程设计成S走线,并如图3所示分别隔离,最终才达到指标要求,即使这样,在高低温实验时仍有不稳定现象。通过微调电容和壳体接地点实验,终于发现壳体的影响和端口驻波反射、内部功率电阻对射频放大器的干扰影响。经过再次改进电路布局,将多余端线接口引线直接焊到基板,输入、输出端口采用高频插头以及壳体大面积接地,包括基背面导电带接地,并调大功率电阻的面积,减小发热,才使之能在高低温下稳定可靠的工作,同时还使其以自身来补偿输出自激。

◇采用微波二极管提高电路精度

  该AGC中频放大器的三级电压增益放大均有三只PIN微波二极管 (2K4D)整形缓冲,它对输出增益的一致性和增益控制电压值尤其重要,该二极管的参数为:反向电压VB≥200 V、正向微分电阻Rr≤1Ω、结电容CP≤0.40PF、耗散功率PW≥0.3w。开始组装时,只注意到满足军品二极管的通用特性,但产品的一致性(相对控制电压值各对应的各输出幅值)都没有引起足够的重视,无法按用户要求的四个一组进行配套,即容易造成生产成本的浪费。在初次问题分析中始终没有找到问题所在,只是认为三个中放电路的不一致。经与用户探讨和试验摸索发现:微波二极管的正向微分电阻和结电容直接影响其输出一致性。事实上,二项参数一起配对并且一块三只,四块一组共12支要求一样也比较困难,组装前的筛选配对很难进行。之后经过逐级分析、微调试验,才能总结出它的变化规律。实际上,只要控制好三级中频放大对应位置的二极管的一致性,即可达到输出对应。至此,便可采用精分微波二极管的结电容,将其参数一致性的结电容(精确到0.01PF)装在一起,以减少配套的工作量。在组装时,将一致的二极管焊在同一级的位置上,从而提高了产品的合格率,达到了用户要求。但针对各批次的一致性精度,还需掌握其规律进行控制,故要继续统计分类,保证用户放心使用和更换。

产品特点

  因为该放大器独特的通用性,与同类产品相比,针对原分立器件组装的AGC中频放大器专用模块,该产品除保证了原有的电特性有所提高以外,还有如下一些特点:

(1)模块尺寸小,引出端采用标准28线平行封焊,插拔更换比较方便。

(2)重量轻,机械可靠性好。由于采用全表面贴装结构,元器件全部小型化、微型化,使之重量远远低于分立器件,同时抗振动冲击能力增强,不会出现引线振动冲断。

(3)采用全金属接地屏蔽、调谐方便。由于备份调整端子多,带通滤波器外接,故可根椐需求很容易改变中心频率和增益范围等。

(4)模块产品尺寸如图4所示。

(5)该放大器的引出端排列符合图5规定。表1所列是其引出端功能。



结论

  表2给出了该放大器的实测数据与要求指标的比较。

  该产品在生产和调试过程中,严格按照制定好的工艺流程和质量控制进行。加之表面组装的厚膜工艺和壳体封装工艺都比较成熟,因而其实测数据完全满足要求,且已通过设计定型。本AGC中频放大器模块可取代由分立器件组装的电路形式。该模块是中频放大器专用模块的一个新品种,为今后同类产品的研制提供了相对很好的经验。

关键字:中频  电容  放大器 编辑:金海 引用地址:AGC中频放大器设计

上一篇:AGC中频放大器设计
下一篇:基于MAX260的低频微弱信号的模拟预处理

推荐阅读最新更新时间:2023-10-12 20:11

基于超级电容-铅酸蓄电池混合储能的太阳能充电器设计
  近年来随着能源短缺问题日益突出, 太阳能、风能等新型无污染的替代能源应用日益受到重视。独立型太阳能照明系统因其结构简单、无需铺设电缆, 且搭建、携带较为方便等特点在照明领域有着广泛应用前景。   但目前急需解决的有铅酸蓄电池使用寿命较短及系统在弱光条件下充电能力不足这两大问题。系统储能 元件 铅酸蓄电池设计寿命约三年, 但由于充电方式、存储方式以及人为等诸多因素的影响导致其使用寿命过短,需要经常更换, 不仅加大了使用成本也影响了系统的稳定性。另外大部分已使用的系统在弱光条件下充电能力不足, 导致系统太阳能板利用率不高; 传统提高弱光充电能力的方法是采用组态优化控制来实现, 即根据外界光照强弱采用 继电器 控制太阳能板组件按
[电源管理]
基于超级<font color='red'>电容</font>-铅酸蓄电池混合储能的太阳能充电器设计
精密差分输出仪表放大器应用电路的设计
采用先进技术的模数转换器(ADC)能够接收差分输入信号,能够将来自传感器的整个信号路径以差分信号的形式传送给ADC。这种方法提供了显著的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。 图1(a)和1(b)所示的是两种常见的差分输出仪表放大器电路。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表放大器相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。 图1 设计差分输出仪表放大器的通用方法 图2所示是一个没有上述缺陷的差分输出仪表放大器原理图。这种设计充分利用了这样的特性,仪表放大器的输出实际上是其输出引脚(Vo)与参考引脚(Vref)之间的差,保
[模拟电子]
如何设计可靠性更高、尺寸更小、成本更低的高电压系统解决方案
如何设计可靠性更高、尺寸更小、成本更低的高电压系统解决方案 文章中讨论的其他器件:TPSI3050、TPSI2140-Q1 工厂自动化设备、电网基础设施应用、电机驱动器和电动汽车 (EV) 等高电压工业和汽车系统能够产生数百至数千伏的电压,这不仅会缩短设备寿命,甚至会给人身安全带来重大风险。本文介绍如何利用全新隔离技术来保证这些高电压系统的安全,从而提高可靠性,同时缩小解决方案尺寸并降低成本。 隔离方法 集成电路 (IC) 实现隔离的方式是阻断直流和低频交流电流,而允许电源、模拟信号或高速数字信号通过隔离栅传输。图1展示了三种用于实现隔离的常用半导体技术:光学(光耦合器)、电场信号传输(电容式)和磁场耦合(变压器)
[电源管理]
如何设计可靠性更高、尺寸更小、成本更低的高电压系统解决方案
电动汽车新型超级电容能量管理系统设计
1 系统总体概述 超级电容、电池能量管理系统主要由BLDCM驱动控制器和双向DC-DC电路两部分组成,系统框图如图1所示。 图1中,L、M1、M2组成双向DC-DC电路,VT1~VT6组成三相逆变器,并采用一个高端负载开关M3,在必要的时候控制母线和蓄电池的通断。蓄电池母线电压Vin=72 V,超级电容额定参数为165 F/48 V, 无刷直流电机参数为72 V/5.5 kW。电机运行时,负载开关M3导通,三相逆变器正常工作,双向DC-DC不工作,系统能量来自蓄电池;电机能量回馈制动时,母线电压高于蓄电池电压,并通过比较器C1信号触发关断负载开关M3,双向DC-DC工作在BUCK状态,超级电容被充电;电机启动或大转矩输出时,双
[嵌入式]
Mindspeed扩展其突发模式互阻抗放大器(TIA)系列
敏迅科技有限公司宣布:推出一款针对广泛部署的千兆位无源光网络(GPON)应用的1.25Gbps 互阻抗放大器(TIA),同时推出一款针对下一代XG-PON1应用的2.5Gbps TIA,从而实现了对其应用于光线路终端(OLT)设备的突发模式TIA系列的扩展。 从2012年9月6日至9月9日,Mindspeed将在于深圳会展中心举办的第14届中国国际光电博览会(CIOE)1号展馆1A76展位上,重点展示其针对GPON OLT应用的M02036突发模式TIA和针对XG-PON1 OLT应用的M02035突发模式TIA。公司也将展示与其搭配的突发模式激光驱动器,以及针对千兆位以太网无源光网络(GEPON)、GPON、XG-PON和
[网络通信]
CBB电容如何检测?
CBB电容是聚丙烯电容,主要特点有体积小、容量大、可靠性高和自愈性强等特点。CBB电容的稳定性略差,一般CBB电容被使用在谐振电路中,可以作为直流脉动和交流降压用。下面欧凯鑫锐的技术人员就带大家来了解一下CBB电容的检测方法! 一、检测10pF~0 01uF电容 检测10pF~0 01uF的CBB电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触
[测试测量]
CBB<font color='red'>电容</font>如何检测?
大众电动车电池组保持高效充电,16万公里仍可保持70%电容
基于油价上涨的背景之下,可持续资源利用解决日常用车问题显得刻不容缓,在有限资源不可知未来价格的基础之上,新能源车型的发展有利于车企和消费者探索出更加经济适用的汽车商品。 电动车在日常中是否实用? 新能源车型在我国的发展现在是一个成长的阶段,在“成长”的过程中,就会有许多“青春期”的烦恼,电动车现今作为新能源领域的主流车型,如何能让消费者不再为找不到充电桩而发愁?如何解决电池续航问题让电动车不再成为“电动爹”?如何能延续电池寿命而不用短期更换增加用车支出?这样的问题总是让很多消费者对电动车的需求大打折扣。 仅是考虑油价的问题和电池续航问题,消费者通常会选用节省油耗的车型,或者是选择混动车型,电动车对于消费者的需
[汽车电子]
大众电动车电池组保持高效充电,16万公里仍可保持70%<font color='red'>电容</font>量
论电源中安规电容的重要性
不知道大家有没有过这样的经历:小时候很好奇,什么东西都想碰,去摸插座电源,结果被电到了?小编小时候就做过这样的事情,因为年纪小无知还好奇,被电到了和家长说反而还挨骂。看到这几年触摸插板结果触电而亡的新闻就觉得很揪心。现在想想就小编这个好奇心能活到现在真的不容易,还让父母担心。 电源里有不同的电子元件,打开开关电源可以看到里面有个黄色盒型电子元件和蓝色圆形电子元件,这两个电子元件就是安规电容,黄色盒型的是安规X电容,蓝色圆形的是安规Y电容。那么它们在开关电源里是做什么用的呢?那么我们先来搞清楚什么是安规电容。 安规电容是指外部电源断开后会迅速放电,人触摸不会有触电感,而且安规电容失效后,不会导致电击,不会伤害人体。而普通电容
[嵌入式]
论电源中安规<font color='red'>电容</font>的重要性
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved