多时钟域下同步器的设计与分析

最新更新时间:2006-09-12来源: 电子设计应用关键字:触发器  异步  采样 手机看文章 扫描二维码
随时随地手机看文章

引言
  在数字电路设计中,大部分设计都是同步时序设计,所有的触发器都是在同一个时钟节拍下进行翻转。这样就简化了整个设计,后端综合、布局布线的时序约束也不用非常严格。但是在设计与外部设备的接口部分时,大部分外部输入的信号与本地时钟是异步的。在SoC设计中,可能同时存在几个时钟域,信号的输出驱动和输入采样在不同的时钟节拍下进行,可能会出现一些不稳定的现象。本文分析了在跨时钟域信号传递时可能会遇见的问题,并介绍了几种处理异步时钟域接口的方法。


           图1 多时钟域的信号传递


           图2 异步信号传输通过不同路径


              图3 同步器的构建和使用


             图4  两级采样的同步器


               图5 一级采样的同步器故障


                 图6 两级采样的同步器

亚稳态
  当触发器的建立时间和保持时间要求没有得到满足时,触发器就会进入一个界于逻辑1和逻辑0之间的第三种状态,即亚稳态。

  理想的触发器是在时钟边沿到达的那个时刻采样数据。但是在实际电路中,时钟的跳变具有一定的斜率,电路采样、保存、传递数据也需要一定的时间。如果在数据还未稳定时进行采样,就可能会导致亚稳态的发生。

  平均无故障时间MTBF(Mean time between failures)是指任意两次故障出现的间隔时间的期望值。一个系统亚稳态的MTBF是和系统频率、器件速度相关的指数函数:

  公式中的tr是有效的亚稳态最大分辨时间,是指触发器能够保持亚稳态输出,并不会引起故障的时间。f是触发器的时钟频率。是异步输入每秒变化的次数。To和是由触发器的电气特性决定的参数,可用于表征触发器翻转速度的快慢。增加tr,或者减小To、或f都可以加大MTBF,即使两次故障出现的时间间隔加大。但在一般情况下,系统中的tr和f是固定的,故只能通过减小To、t或a来改善系统。降低输入信号的变化频率a可以满足建立时间和保持时间的要求。而To、t是器件的固有性质,只有用速度更快的器件才能减小它们。

多时钟域下同步器的设计与分析
  当在某个时钟边沿采样一个变化的数据信号时,时钟边沿和数据变化这两个事件出现的先后顺序将决定结果。这两个事件出现先后的差异越小,判断哪个事件先到来所花的时间就越多。当两个事件到来太接近时,就会使判决所花的时间超过规定的分辨时间,从而导致故障发生。

异步信号传输的问题分析
  如果信号跨越不同的时钟域,就有可能会出现不满足建立时间和保持时间的情况。如图1所示,信号A经过组合逻辑传递到模块B中的触发器,若信号A到达时间与模块B的时钟边沿非常接近,模块B中的触发器就会工作在不确定的亚稳态。如果这个亚稳态持续了一个周期,就会影响到下一级的触发器,最终产生连锁反应,使整个芯片的功能发生混乱。

  另外一种可能出现的现象如图2所示,由于在实际电路中存在延时,图中采样同一个异步信号的两个D触发器无法按理想状况接收到时钟信号和输入信号。因此,当异步输入在时钟边沿发生变化时,会出现在一段时间内,两个触发器的输出值SYN1和SYN2不一致的情况。这种不一致将会导致系统出现不正确的操作。

  另外,图2中组合逻辑电路中的不同通路不可避免的具有不同的延时,因此,产生不一致结果的可能性就更大,这种情况在有异步信号输入的状态机里特别普遍。例如,某个VME总线接口芯片,用于完成VME总线时序到MC6000系列CPU时序的转换。CPU时钟是50MHz,VME总线系统的时钟是64MHz。VME总线是异步总线,存在很多跨越时域的握手信号,如果不使用同步器对与状态机的状态变量相关的信号进行同步化处理,就会出现故障。

同步器在多时钟域设计中的应用
  同步器的功能是采样异步输入信号,并使产生的输出信号满足同步系统的建立时间和保持时间的要求。简单的同步器一般采用D触发器来构成。图3中,D触发器的每一个时钟触发沿采样异步输入信号,并产生一个同步后的输出信号。要构建更好的同步器可以采用更快速的触发器,减小采样保持时间,使器件能够更快地采样到信号;或者增加MTBF方程中的tr值,等信号稳定后再采样,这可以通过延时采样来实现。

  图4为最常用的一种同步器,与一级同步相比,两级同步能够更可靠地避免亚稳态的出现,而三级以上同步器的效果并不能提高多少。

同步器故障分析
  如果同步器的建立时间和保持时间得不到满足,那么触发器同样会进入亚稳态。这个亚稳态通过不同的延时传到组合逻辑中,一部分电路把这个信号识别为逻辑1,一部分又将其识别为逻辑0,也会导致系统逻辑的混乱。

  下面将比较一下一级同步器和两级采样同步器的差异。

  一级同步器如图5所示,aclk时钟域产生的信号adat的变化与bclk时钟域时钟的边沿采样太接近,未满足采样保持时间。同步器故障导致输出出现亚稳态,且在下一个时钟边沿到来之前,不会变成稳态。此输出传递到后面的组合逻辑中,导致系统混乱。

  两级同步器如图6所示,当第一级触发器采样异步输入之后,允许输出出现的亚稳态可以长达一个周期,在这个周期内,亚稳态特性减弱。在第二个时钟沿到来时,第二级同步器采样,之后才把该信号传递到内部逻辑中去。第二级输出是稳定且已被同步了的。如果在第二级采样时第一级的输出仍然处于很强的亚稳态,将会导致第二级同步器也进入亚稳态,但这种故障出现的概率比较小。

  两级同步器总体的故障概率是一级同步器故障概率的平方。例如,对74LS74系列器件来说, TO=0.4s,t=1.5ns,建立时间ts=20ns。设时钟频率为10MHz,则同步器分辨时间tr=80ns。若异步信号变化频率a=100kHz,则一级同步器的平均无故障时间为:

  两级同步器的MTBF为[MTBF(80ns)]2=1.296×1023s。在大部分的同步化设计中,两级同步器足以消除所有可能的亚稳态了。

结语
  在异步设计时,同步化和亚稳态的问题是难以避免的。本文对该类问题做了较为详细的分析。文中介绍的同步器解决亚稳态和同步化的方案简单、可行性较高,能够满足绝大部分的逻辑设计。

关键字:触发器  异步  采样 编辑: 引用地址:多时钟域下同步器的设计与分析

上一篇:基于FIFO的目标距离脉冲模拟电路
下一篇:基于AD6620的正交解调器设计

推荐阅读最新更新时间:2023-10-12 20:12

特斯拉的交流异步电机 国内车企为何不“感冒”?
内燃机已经存在了大约140年,如今,作为车迷的我们已经完全熟悉了它所有的细节。我们可以与朋友聊聊压缩比、马力和气门正时,我们知道排量的优势和涡轮机的效率。即使是最新款超级跑车所采用的发动机技术,经验丰富的汽车大牛们也可以在几个小时内给它来一个“底朝天”式的完全解析。 在电动汽车逐渐兴起的当下,驱动电机已经成为广大车企的新宠,但一般消费者却对它知之甚少。发动机有自然吸气和涡轮增压之分,而纯电动车的驱动电机形式也不尽相同。目前,主流的驱动电机有交流异步电机和永磁同步电机两类。如果你稍微了解下就会发现,国内车企对永磁同步电机偏爱有加,而特斯拉却更喜欢交流异步电机,是什么原因导致了这种现象呢? 两种电机有何不同? 在分
[汽车电子]
特斯拉的交流<font color='red'>异步</font>电机 国内车企为何不“感冒”?
详解示波器的三个主要参数:采样率,存储深度,带宽
1.采样率 示波器在测量信号时,需要这样,一个一个点的对波形进行采样,显然,这样的采样点越多,所测到的波形,就越接近最真实的波形。如果采样的点数过少,波形就会失真。 如一台示波器标注的采样率是:1GSa/s。sa就是sample ,样本,样品意思。1G = 1000MB = 1000 000KB = 1000 000 000字节。即,每秒可进行10亿次采样。一次采集一个字节。 注意,这只是示波器标注的最高采样率。它在实际使用时的采样率还受限于另外一个参数:存储深度。 2.存储深度 示波器在工作时,是在截取一段一段的波形,然后放在显示屏上给我们看的。需要将采集到的波形,存储到内存区,方便计算和处理。这块内存区的容
[测试测量]
详解示波器的三个主要参数:<font color='red'>采样</font>率,存储深度,带宽
基于自抗扰控制器的异步电机变频调速系统
1 引言 随着电力电子技术、微电子技术和微处理器的不断发展,异步电机变频调速系统的调速性能得到了很大提升,与传统的直流电机调速系统相比,它具有结构简单、调速范围宽、效率高、特性好、运行平稳、安全可靠等特点,在生产实践中得到了广泛应用。变频器加异步电机构成的变频调速系统大有取代直流调速系统的发展趋势。 可编程逻辑控制器(PLC)被公认为现代工业自动化的3大支柱之一,其控制系统稳定可靠,通讯组网灵活,可方便集成到现场总线控制系统中,适应当前自动化程度日益提高的要求。PLC变频调速系统以其优越的性能得到了越来越多的重视,但对于多变量非线性强耦合的异步电动机,采用常规的定参数PID控制方法,对负载变化的适应能力差、抗干扰能力弱且受系统参数
[电源管理]
基于自抗扰控制器的<font color='red'>异步</font>电机变频调速系统
利用异步通信芯片16C552实现PC机与DSP的串行通讯
摘要:介绍了异步通信芯片16C552的功能、特点、结构和内部寄存器,给出了用16C552芯片实现PC机与DSP串行通讯的方法,同时给出了它们之间的硬件接口电路和软件初始化程序。 关键词:16C552;串行通讯;异步 当实现PC机与DSP的串行通讯时,通常可直接利用DSP的串行通讯接口(SCI)模块和SCI多处理器通讯协议(即空闲线路模式和地址位模式)来在同一串行线路中实现多个处理器之间的通讯,也可以采用SCI异步通讯模式实现串行通讯。这两种方式虽然都能方便地实现串行通讯,但它们都需占用系统较多的硬件和软件资源, 因而不适用于对实时性要求比较高且系统资源紧张的应用场合。笔者在研制电力有源滤波实验系统中,由于采用了异步通讯芯片
[应用]
可抑制瞬态干扰的触发器
可抑制瞬态干扰的触发器
[模拟电子]
可抑制瞬态干扰的<font color='red'>触发器</font>
STM32 ADC采样时间、采样周期、采样频率计算方法
ADC转换就是输入模拟的信号量,单片机转换成数字量。读取数字量必须等转换完成后,完成一个通道的读取叫做采样周期。采样周期一般来说=转换时间+读取时间 。而转换时间=采样时间+12.5个时钟周期。采样时间是你通过寄存器告诉 STM32 采样模拟量的时间,设置越长越精确 一 STM32 ADC采样频率的确定 1. :先看一些资料,确定一下ADC的时钟: (1),由时钟控制器提供的ADCCLK时钟和PCLK2(APB2时钟)同步。CLK控制器为ADC时钟提供一个专用的可编程预分频器。 (2) 一般情况下在程序 中将 PCLK2 时钟设为 与系统时钟 相同 RCC_HCLKConfig(RCC_SYSCLK_Div1); RC
[单片机]
异步电机的效率一般是多少_异步电机的等效电路有哪几种
  异步电机的效率一般是多少   异步电动机的输出功率与输入功率之比。通常用百分数表示。   异步电动机的效率一般为75%-92%,影响电动机效率的因素有很多,根本原因是其内部损耗:效率=(输入功率-损耗功率)/输入功率。   异步电动机的效率也随负载的大小而变化。空载运行时效率为零,负载增加,效率随之增大,当负载为0.7~1倍额定负载时,效率最高,运行最经济。   异步电机的等效电路有哪几种   假定   1、疏忽空间和时刻的谐波   2、疏忽磁丰满   3、疏忽铁损   电机学中把转子侧的量折算到定子侧,折算的准则:坚持电机气隙磁通不变,可是这种办法不是仅有的,例如按定子总磁链安稳的准则进行折算,按转子总磁链安稳的准则
[嵌入式]
<font color='red'>异步</font>电机的效率一般是多少_<font color='red'>异步</font>电机的等效电路有哪几种
异步电机矢量控制算法基础(下)
5.6 )SVPWM实现过程 从上节的分析可知,哪几个电压空间矢量和其作用的时间是SVPWM的两个根本的问题。要实现SVPWM,仿真搭建时需要注意和解决的几个问题。 (1)、电压空间矢量所在扇区的判断; (2)、基本矢量作用时间的计算; (3)、基本矢量的作用顺序及扇区切换点时间确定。 只要解决以上3个问题,就能实现SVPWM。 下面我们用一个小例子来理解PWM信号。图2是一个直流电路,它有一个电阻,一个开关,一个灯泡,和一个驱动灯泡的10V直流电压源。我们如何能得到2.5V电压驱动下的灯泡亮度呢? 5.6.1 )SVPWM理论讲解 该状态对应的电机绕组连接图如下:
[嵌入式]
<font color='red'>异步</font>电机矢量控制算法基础(下)
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved