基于Delphi的DDS可视化新型任意信号发生器

最新更新时间:2007-02-09来源: 国外电子元器件关键字:波形  时域  正弦  图形 手机看文章 扫描二维码
随时随地手机看文章

1 引言

随着微电子技术的迅速发展,DDS技术得到了广泛的应用,市场上有很多高性能多功能的DDS专用器件,但其工作方式和控制方式固定,一般用户很难按自己的要求获得相应的波形[1,2]。同时任意波的输入方式目前都只限于时域,无法实现电子、通信等领域的科研与教学中所需频域参数定义的波形。本文介绍一种基于DDS的可视化信号发生器,它高精度地生成双通道±8 V、0.01 Hz~10 MHz正弦波等常规波形。还可产生数码流、调制信号、随机噪声、扫频信号及时域或频域自定义波等信号,信号参数均步进在线可调,由USB1.1与Delphi7.0完成与PC连机时的接口及图形操作界面设计,TFT实现单机工作时的图形操作界面,实验表明该设计是行之有效的。

2 系统设计

系统结构框图如图1所示,其中用Delphi来开发图形上位机软件;PDIUSBD12为USB控制器,MCU实现系统智能控制和数值运算,FPGA为系统数字载体,内建DDS、MCU接口、时钟控制、Flash读写、键盘扫描和TFT控制等模块。设计双路D/A输出通道,通过调节DAC参考电压提高小信号幅度分辨率,系统既可由上位机软件控制实现信号源功能,也可通过触摸按键和TFT图形液晶显示器智能实现便携式任意源功能。

设计中取系统时标信号频率为fr=100 MHz,输出信号每一周期由N个取样点构成,取样周期为Tr=(1/fr),则输出信号的频率为fo=fr/N,设合成信号初相为ψ0,相位累加器位数为x=32,存储器位数为y=10,则

其中,f0min为合成器最低输出频率,△f为频率分辨率,设输出频率控制字为k,则:

nψ=ψ02x/2πk为初相量化值,最小相移、占空比的最小值和分辨率分别为:

当x-y>4时,正弦输出相位截断噪声的信噪比SNRP=6.02y-3.992=68.24dB[1,3],可见相位截断后仍有较高的信躁比,幅度噪声的信噪比SNRE=6.02y+20lgr,其中r为输出波形与满刻度的峰-峰值之比,取r=1,则SNRE=72.2 dB[3,4]。

3 FPGA与分段时标设计

FPGA设计原理如图2所示。DDSA、DDSB均是双通道DDS产生模块,内部由32位累加器和波形存储器RAM组成,累加器在累加时钟的控制下对频率控制字k进行累加,其结果作为波形存储器RAM的地址来读出RAM中波形数值。波形存储器RAM为双口RAM,既可在读信号、读地址的配合下进行RAM的读操作。也可在写信号、写地址和数据输入信号的配合下进行写操作,更换波形数据见图3。双通道设计为互相调制提供了方便。波形存储器RAM为双口RAM,在进行波形切换时,由MCU控制FPGA启动Flash读写单元,以10 MHz的速度从外部的Flash中读取4 096个波形数据到双口RAM中。

接口模块(interface)主要输出8位DB、24位AB、256个片选信号、读/写控制信号,寻址能力达16 MB。Reg_array是寄存器矩阵,实现MCU对FPGA及系统的控制.主要储存时钟分频系数CLK_DIV[63..0],双通道幅度控制字V[31..0]、Flash的地址、数据和控制信号REGF[63..0]等。Ping_lv是频率控制模块,完成调频、扫频、频率控制功能,输出DDS信号产生单元所需的频率控制字KA[31..0]和KB[31..0],由频率字选择模块、调频模块、扫频模块组成。

任意波形产生时,先将从计算机采集到的波形数据量化编码后通过USB下载到Flash存储器,从Flash中读取数据到双口RAM中。这样既能快速地产生任意波形.又能使任意波形在脱离计算机后还能继续使用。系统Flash容量为2 MB,分为32页,除了存储常规的6种波形外,还能储存26个任意波形。

DC可产生方波、数据流等其他波形,he.chen主要完成信号的合成功能,包括模拟调幅、随机信号、ASK、FSK等。Clcok时钟控制单元在CLK_DIV[63..0]和REGC[63..0]的控制下对外部40 MHz时钟进行倍频和分频,输出系统所需时钟。tft是TFT显示控制单元,采用查找表结构进行单色显示。输出直接接到TFT屏的三原色数据DR[5..0]、DG[5..0]、DB[5..0],和时序控制信号VS、HS、TFTCLK、REN等,实现波形菜单与图形界面显示。Keysan是键盘扫描单元,自建键盘扫描时序,输出行列矩阵式键盘行列扫描信号,能自动进行键值识别、键码锁存keyvalue[7..0],并产生中断信号int0。Flash控制模块采用NOR Flash方式,读操作与普通RAM一样,但写操作时要先擦除并输入命令后才能读写。为此设计给MCU提供与RAM一样的操作接口,同时在系统进行波形切换时.能自动地从外部Flash波形存储器中读取4 096个波形数据到DDS单元中.进行波形数据的改写。

根据DDS原理。在较低的频率段,由式(2)可知频率控制字k减小,在对其进行量化时,势必加大了量化误差,故降低了信号的时域精度,

为此,在低频段可由式(1)通过减小fr来降低f0min,提高k以提高信号的时域精度,可以采用分频的方法,即在不同的频率段采用不同的时标时钟fr来解决这个问题,分段时标见表1。


4上位机界面、信号参数定义与接口

本设计采用USB1.1作为通信接口,针对由PDIUSBD12实现的USB接口,可以利用Philips公司提供的EasyD12库来编写PC机应用程序。EasyD12库包含3个文件,分别是EasyD12.lib、EasyD12.dll和EasyD12.h。库文件提供了4个可以调用的函数,用于完成对PDIUSBD12端点1、端点2的读写操作。这4个函数分别为:

采用上述4个函数可以简单地完成对PDIUS-BD12的读写操作。由于本设计中通用USB数据传输模块的主要作用是由控制界面向接口模块发送各种命令及波形数据,PC机对发送的时机是十分清楚的(通常在按键或菜单选项的响应函数中出现),所以命令及数据的可靠性及实时性能得到充分的保障。

主控制界面由波形设置、任意波形、模拟调制、数字调制、扫描信号、端口设置等部分组成,利用Delphi7.0提供的强大控件对信号幅度、频率、占空比等参数实现实时控制,还有任意信号的手动制作和特殊波形(如抽样波形、正弦的谐波合成、可控数码流等)的采样。图4为数码流PC控制界面。
任意波形产生是用户在画图区用鼠标绘制任意形状的单值波形.把PixelFormat属性设置为pf8bit,信号幅度采集分辨率为10位,通过对画板上的波形扫描把黑色的像素点用数组记录该处坐标值,扫描后得到所需波形数据。

时域信号叠加产生是依据各种实际需要,对常规波形进行叠加。软件主要由波形构造、数据计算分析及控制组成。通过用户输入的公式及各常规波形的参数计算得出新的波形数据,然后根据数据进行描图。计算定义为时域波形数据的加、减、乘、除。

频域还原时域信号产生是采用谐波输入法。依据幅度谱和相位谱信息。利用反傅立叶变换实偶对称级数,还原为时域波形,经4 096个点数据采集,10位量化编码后得到所需波形数据。

5 研制结果与展望

研制的双通道"便携式DDS高精度信号发生器"样机采用40 MHz外部晶振,TFT选用彩色PT035TNO1,FPGA选用Altera-Cyclone系列EP1C6 T114-8。DAC选用10位ADI-AD9763,运算放大器选用ADI-AD8014,MCU 选用Philips-P89LV51RD2,Flash选用AM19LV160D[5]。主要性能如下:

(1)主波形有正弦波、方波等,100μHz~10MHz,储存波形为100 Hz~100 kHz。分辨率为100μHz。幅度分辨率10 bit,(≤10 MHz)10 mV~18Vp-p(高阻),1 mV~10 Vp-p(50 Ω)。

(2)任意波形由计算机界面输入,具有时域与频域三种输入方式。

(3)调制特性:内调制,调制信号频率范围为100μHz~1 MHz,调制深度范围为1%~100%,数码流、码元速率可编程,调频时最大频偏为载波频率的50%。

(4)扫描特性:频率扫描扫描起终点及步进100μHz≤f≤10 MHz,幅度扫描扫描起终点及步进10mV≤V≤10 V,步进时间均为1 ms~20 s,线性扫描。向上或向下或来回扫描,自动控制方式。

(5)伪随机噪声:随机码元移位速率可调,可编程数码流:码元32位可编程输入,波特率1 kb/s~1000 kb/s,电平10mV~10 V。

实验表明:研制的样机功能多、操作方便、TFT与PC屏幕显示直观、具有独特的任意信号输入方式、性价比高,仪器还可设计对外部输入信号实时调制,直流分量应可控,由矢量分析仪产生的频谱图存储后转入信号发生器来重现时域波形的工作正在研究之中。

关键字:波形  时域  正弦  图形 编辑: 引用地址:基于Delphi的DDS可视化新型任意信号发生器

上一篇:RF功率MOSFET产品及其工艺开发
下一篇:基于AD8108的宽频带低串扰视频切换矩阵的设计

推荐阅读最新更新时间:2023-10-12 20:12

STM32之PWM波形输出配置总结
一. TIMER分类: STM32中一共有11个定时器,其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。其中系统嘀嗒定时器是前文中所描述的SysTick。 定时器 计数器分辨率 计数器类型 预分频系数 产生DMA请求 捕获/比较通道 互补输出 TIM1 TIM8 16位 向上,向下,向上/向下 1-65536之间的任意数 可以 4 有 TIM2 TIM3 TIM4 TIM5 16位 向上,向下,向上/向下 1-65536之间的任意数 可以 4 没有 TIM6 TI
[单片机]
STM32之PWM<font color='red'>波形</font>输出配置总结
助力图形性能优化,Imagination提供最新增强版开发工具
领先的图形、神经网络加速和连接技术提供商Imagination Technologies (GDC展位号S763)宣布推出最新款的增强工具,以帮助开发者对使用了PowerVR图形处理器的Android设备进行图形性能优化。这些工具分别是:用于实时GPU和CPU性能统计的PVRMonitor、用于归集和分析应用的 PVRTune、以及用于在PowerVR设备上进行CPU/GPU无缝调试的PVRStudio。 Imagination Technologies销售兼业务拓展执行副总裁David McBrien表示:“PowerVR GPU在Android手机中占有重要地位,特别是在未来几个月紫光展锐(Unisoc)和联发科技(Med
[手机便携]
时域反射仪的硬件设计与实现----关键电路设计(五)
4.1时域反射测试 经过较长时间的硬件调试,以及软硬件电路的相互配合,时域反射仪基本实现了电缆测试的功能,下面将分不同情况对时域反射测量进行验证。 4.1.1无电缆下的测试 在进行电缆故障测量前一般需要对反射仪做粗略的设置,即选定一个脉冲信号,使其在屏幕上方可以看到分别从两个通道上输入的发射脉冲信号,以确保时域反射仪处于正常工作状态。图5-1给出了在没有接被测电缆情况下,在屏幕上显示的波形。     从图中可以看到,两个通道波形基本相同,都看不到有反射信号的产生,从两个角度可以分析该现象。 传输线理论分析:因为脉冲信号经过放大以后为8V,通过功率分配器分别送到两个输入端口,则经过均分以后,每个脉冲的
[电源管理]
<font color='red'>时域</font>反射仪的硬件设计与实现----关键电路设计(五)
时域反射仪OTDR原理及使用攻略
光时域反射仪简介 光时域反射仪(OTDR)是通过对测量曲线的分析,了解光纤的均匀性、缺陷、断裂、接头耦合等若干性能的仪器。它根据光的后向散射与菲涅耳反向原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。 光时域反射仪原理简介 从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。以下的公式就说明了OTDR是如何测量距离的。 d=(c& TI mes;t)/2(IOR) 在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就
[测试测量]
光<font color='red'>时域</font>反射仪OTDR原理及使用攻略
基于C8051F410的波形发生器设计
这段程序大部分是新华龙公司的官方资料,鄙人稍加修改,简化了不少代码,并增加了几种波形,只要按下P1.4键就可以切换。 //----------------------------------------------------------------------------- // F41x_DACs_SineCosine.c //----------------------------------------------------------------------------- // Copyright 2006 Silicon Laboratories, Inc. // http://www.silabs.com // /
[单片机]
使用示波器和波形发生器对元器件进行测试的方法
   本文说明了使用示波器和波形发生器对元器件进行测试的方法。将展示电容、电感、二极管、双极晶体管及电缆的测试过程。这些测试方法可用于确定故障部件或识别无标注元器件的作用。   测试配置   本测试案例的基本理念是通过波形发生器在该元器件上施加一个激励,并通过示波器测量它的响应。安捷伦InfiniiVision X系列示波器采用内置波形发生器,可为元器件测试提供便利的“一体化”解决方案。应当注意的是,示波器不能完全替代专用的元器件测试仪,后者能提供更高的精度和更全面的测试。   图1显示了测量配置。波形发生器连接到示波器输入端,另一支路连接至被测件(DUT)。对于表贴元器件的测试,推荐使用安捷伦11060A(或
[测试测量]
使用示波器和<font color='red'>波形</font>发生器对元器件进行测试的方法
无刷直流风扇电机180°正弦波控制
目前的变频风扇一般采用无刷直流电机,因其无励磁绕组、无换向器、无电刷、无滑环,结构比一般传统的交、直流电动机简单,运行可靠,维护简单。与鼠笼型感应电动机相比,其结构的简单程度和运行的可靠性大体相当,但由于没有励磁铁耗和铜耗,功率在300W以下时,其效率比同规格的交流电机高10%~20%。 无刷直流电机一般采用方波驱动,采用霍尔传感器采样转子位置,以此为基准信号控制绕组强制换相。这种方案控制方法简单,成本低,在目前电动车方案中应用广泛。但由于方波驱动换相时会出现电流突变,导致转矩脉动较大,转动不平稳,噪声指标较差,难以在家电应用领域推广。而正弦驱动可以避免换相时的电流突变,虽然最大转矩会降低,但在噪声指标上有明显的优势。
[工业控制]
无刷直流风扇电机180°<font color='red'>正弦</font>波控制
松下45nm工艺“UniPhier”集成2.5亿个晶体管
松下电器产业日前在东京一家宾馆内,就“CEATEC JAPAN 2007”上发布的蓝光光盘录像机和DVD录像机配备的45nm工艺SoC(系统级芯片)“UniPhier”做了说明。与2000年发布的180nm产品相比,晶体管个数增至原来10倍左右,约2亿5000万个,耗电量减小70%,底板面积减小94%,主要LSI数量由17个减至1个。 说明会上,在补充07年6月发布内容的同时,再次介绍了该公司在UniPhier方面的努力。另外,CEATEC上发布的蓝光光盘录像机“DMR-BW900”的内部构造。通过采用45nm工艺,虽然配备支持MPEG-4 AVC/H.264 High Profile格式的编解码器以及三维图形引擎但降低了耗
[焦点新闻]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved