Δ-Σ 转换器信噪比有何不同之处

最新更新时间:2007-11-22来源: EDN China关键字:调制  高频  滤波  寄存 手机看文章 扫描二维码
随时随地手机看文章
许多工程师仍努力使 (Δ-Σ) 转换器这个圆形销子适应标准 ADC 这个方形孔。

当我还是孩子的时候,父母给我买了一个直径为 1 英寸的闭壳龟。我为此兴奋不已!为了保护这个海龟,我准备把它放到我的货车上。车上有个狭槽可以插入方形、三角形和圆形的销子。妈妈看到我拿走一个锤子,就知道肯定不会有好事,于是她对我说:“你是无法将一个方形的销子(或是一个海龟)放进一个圆形的孔中去的”。

这个教训也同样适用于下面的 Δ-Σ 调制器和 ADC 中——一个从 20 世纪 30 年代就被提出的基本概念。该转换器的拓扑结构与其他拓扑的结构有一点点不同。然而,许多工程师仍努力使转换器适应标准的 ADC 方形孔。

Δ-Σ 转换器远远不止是一款简单的模数转换器。它拥有过采样机制、一个调制器和一个数字滤波器。过采样机制在较宽的频率范围内扩展噪声功率。调制器形成低频噪声或将其推至更高频率。数字滤波器可以对噪声信号加以平均并将其从高频信号中消除。理想的逐次逼近寄存器和管线式转换器的 SNR(信噪比)为6.02N+1.76(见参考书目 1),其中 N 为转换器位数。Δ-Σ 转换器的信噪比为 6.02 (N+NINC)+1.76,其中,N 为调制器位数,NINC 为增加的精度,具体为:

在这个公式中,M 为调制器阶数,K 为转换过程中的过采样速率。

带有一阶调制器的理想的 Δ-Σ 转换器信噪比为 6.02N+1.76–5.17 +30log10OSR,其中 OSR 为过采样速率,N 为调制器位数而不是转换器的位数(见图1)。

图1、带有一阶调制器的 Δ-Σ 转换器输入端的信噪比为 6.02N+1.76–5.17 +30log10OSR

这些理想公式均假设 ADC 和 DAC(通常为一位器件)的线性度、噪声以及偏移误差是完美的,且数字滤波器也有一个理想的砖墙响应。事实上,Δ-Σ 转换器并不像我们希望的那么理想。

这些理想的理论只能作为参考,最好的方法仍然是依靠转换器性能的基准数据。这些数据将向你展示转换器性能的真实特点。凭借这些基准数据,并通过对 DC 输入信号进行上百次的采样,您就可以测量出转换器的均方根噪声。在这种情形下,公式 20log10(VRMS-FS/VRMS-NOISE) 可以用来描述任何 ADC 信噪比。

参考书目

1、《所有的比特位去向何处?》,作者:Baker, Bonnie,EDN,2007 年 6 月 7日,第 36 页,网址:www.edn.com/article/CA6447221
2、《CMOS 混合信号电路设计》,作者:Baker,RJ,由 Wiley-IEEE 出版社出版,2002 年版。
3、《Δ-Σ 转换器:理论、设计与仿真》,作者:Norsworthy,Steven R,Richard Schreier 以及 Gabor C Temes,由 Wiley-IEEE 出版社出版,1996 年版Bonnie Baker 现任德州仪器 (TI) 高级应用工程师,并撰写了《A Baker’s Dozen:数字设计人员真正的模拟解决方案》。如欲联系作者,请发送电子邮件至 bonnie@ti.com。

关键字:调制  高频  滤波  寄存 编辑: 引用地址:Δ-Σ 转换器信噪比有何不同之处

上一篇:奥地利微电子推出单端和全差分输入微功耗10位150ksps A/D转换器
下一篇:奥地利微电子推出新款16通道的高速12bit ADC AS1542

推荐阅读最新更新时间:2023-10-12 20:13

DSB-SC调制器原理图
当我们调制载波信号时,将会有4个频率成分。第一个是调制信号本身,二是载波,还有两个载体和调制信号。在无线电传输,调制频率成分远低于其他三个。DSB-SC 调制器 原理图:
[模拟电子]
DSB-SC<font color='red'>调制</font>器原理图
高频开关电源系统原理及维护
  我厂350MW超临界供热机组的直流电源由高频开关电源模块、蓄电池等设备组成,智能高频开关电源系统具有体积小、重量轻、效率高、纹波系数小、动态响应快、控制精度高、模块可叠加输出、N+1冗余等特点,而在发电厂、变电站逐步取代了传统的硅整流型直流操作电源得到了广泛的使用。但调试期间,我厂#2机组的直流电源模块两次发生了充电电流波动的缺陷,原因为#2机组高频开关电源模块近邻热风口,温度高引起调节特性变化。直流系统设备维护的好坏,不仅关系到智能高频开关电源系统的可靠性和寿命,而且直接涉及到机组的控制和保护系统能否正常运行。可见,维护和使用好智能高频开关电源系统是非常重要的。   高频开关电源的结构和工作原理:   2.1高频开关
[电源管理]
<font color='red'>高频</font>开关电源系统原理及维护
高Q积层电感可保持高频电路不受干扰
现在,新设计的芯片内部电极的制造工艺对位置控制更为精确,进而生产出高Q值的0402和0603系列中的积层电感MLG0402Q和MLG0603P系列。积层电感采用铁氧体或其它材料制成的薄片,并在薄片上用金属漆(一般为银)印制出绕线图案而制成。将这些薄片排列成多层并创造出螺旋式内部电极结构。TDK开发的积层技术制成的线圈已无需再将电线绕在一个核心上,从而促进了产品的微型化和批量生产。   低损耗和高Q值是高频应用必不可少的条件   高频电路应用的积层电感采用的是介电陶瓷做成的薄片,而非铁氧体制成的薄片。原因是在几百MHz以上的频率范围内,铁氧体损耗率更大,难以达到高Q值(参见图表一)。线圈易通直流电,但对交流电的作用类似于电阻
[电源管理]
高Q积层电感可保持<font color='red'>高频</font>电路不受干扰
脉宽调制(PWM) 马达驱动器电源的测试分析(下)
8. 损耗与效率测量 对任意系统,要想对其损耗和效率进行测量,最好对系统输入和输出进行同步测量,如图11 所示。 图11. 效率测量图 对于高效系统( 如脉宽调制驱动器) 来说,这一点特别重要。这是因为,如果对输出和输出分开测量,而且在测量之间关闭系统来切换仪器,那么就不能始终确保两个测量具有完全相同的负载条件。如果忽视负载条件的任何差异,那么都会导致测得损耗的误差。 例如: 设置Number 1 测量输入。 关闭系统,重新连接输出测量,并再次开启系统: 设置Number 2 测量输出( 但条件稍微变化)。 表现损耗 = 1052.6 W
[测试测量]
脉宽<font color='red'>调制</font>(PWM) 马达驱动器电源的测试分析(下)
意法新款微控制器整合数字滤波
意法半导体(ST)开始量产的 STM32L45x 超低功耗微控制器(MCU),支持简单易用且价格亲民 的 STM32Cube 开发生态系统。 STM32L451 、 STM32L452 和 STM32L462 产品 线 , 整 合 Sigma-Delta 调 节 器 (Sigma-Delta Modulators, DFSDM)用数字滤波器,可在一款价格亲民的微控制器上,展现高阶音频功能,例 如噪声抑制或声音定位。 高达 512 KB 芯片上闪存和 160KB SRAM,为代码和数据提供 足够的存储空间。 此系列微控制器另整合了真随机数生成器,让智能型装置等注重安全应用的开发变得更加容 易。 STM32L462 还进一步强化安全装
[半导体设计/制造]
工程师讲解:高频平板变压器的设计原理及存在问题
1引言 变压器 一直是电源设备和装置,缩小体积、提高功率密度、实现模块化的一只拦路虎。虽然高频变换技术引入电源后,可以甩掉体积庞大的工频 变压器 ,但还需使用铁氧体磁芯的 高频 变压器。铁氧体磁芯高频变压器的体积虽比工频变压器小,但离开模块化的要求还相差很远。它不但体积还嫌大,而且它的发热量,漏电感都不小。因此近几年来,许多专家、学者、工程师一直在研究解决这个问题的办法。高频 平板 变压器的研制开发成功,就使 变压器 技术发生一个飞跃。它不但能使变压器的体积缩小很多,而且还能使变压器内部的温升很低、漏电感很小,效率可做到 99.6%,成本比一般同功率的变压器低一半。它可用于单端正、反激,半桥,全桥和推挽变换器中作AC/DC和
[电源管理]
工程师讲解:<font color='red'>高频</font>平板变压器的设计原理及存在问题
基于TLC5941的全彩色LED大屏幕驱动设计
1 引言    近年来,随着计算机技术、大规模集成电路和专用元器件的飞速发展,256级灰度的全彩色LED大显示屏在国内发展迅速,但是目前其显示效果并不理想:一方面,LED的发光效率受制造工艺的影响表现出固有的差异,而且这种差异还随时间发生变化,这样由大量LED组成的大屏幕显示时会出现一些随机的暗斑或亮斑,严重影响显示要求,需要采用在线的点校正消除这种影响,另一方面,现有的全彩色大屏幕一般亮度等级不足,即便采用了非线性灰度控制技术,在低亮度等级上表现色彩的能力仍然较差,显示的层次感不强,由亮度等级不足导致的另一个问题是进行γ校正不容易,从而使全彩色LED大显示屏产生一定的颜色失真。   TI公司的最新推出的TLC5941驱动芯
[电源管理]
单片机的数字滤波设计
1 数字滤波设计原理 这里有很多种数字滤波方法,我们见选用其中几种来进行设计,如中值滤波、算术平均滤波、加权平均滤波等等。所以下面我将详细介绍它们。 1.1 中值滤波 中位值滤波是先对某一参数连续采样N次(一般N取奇数),然后把N次采样值按从小到大排列,取中间值为本次采样值。 该滤波方法实际上是一种排序方法,我在此采用的是冒泡法排序。由于在冒泡法排序中,每出现一次前者数据大于后者数据,就要进行二者数据的交换。 该算法的样例子程序如下: #define N 11 //N值可根据实际情况调整 char filter() { char value_buf ; char count,i,
[单片机]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved