GPT-4里套娃LLaMA 2!OpenAI创始成员周末爆改「羊驼宝宝」,GitHub一日千星
梦晨 发自 凹非寺
量子位 | 公众号 QbitAI
大神仅花一个周末训练微型 LLaMA 2 ,并移植到 C语言 。
推理代码只有500行,在 苹果 M1笔记本 上做到 每秒输出98个token 。
作者是OpenAI创始成员 Andrej Karpathy ,他把这个项目叫做 Baby LLaMA 2 (羊驼宝宝) 。
虽然它只有 1500万参数 ,下载下来也只有 58MB ,但是已经能流畅讲故事。
所有推理代码可以放在 C语言单文件 上, 没有任何依赖 ,除了能在笔记本CPU上跑,还迅速被网友接力开发出了各种玩法。
llama.cpp的作者 Georgi Gerganov 搞出了 直接 在浏览器里运行 的版本。
提示工程师 Alex Volkov 甚至做到了 在GPT-4代码解释器里跑 Baby LLaMA 2。
大模型套娃小模型,成了。
羊驼宝宝诞生记
据Karpathy分享,做这个项目的灵感正是来自llama.cpp。
训练代码 来自之前他自己开发的nanoGPT,并修改成LLaMA 2架构。
推理代码 直接开源在GitHub上了,不到24小时就狂揽1500+星。
训练数据集 TinyStories则来自微软前一阵的研究。
2023新视野数学奖得主Ronen Eldan、2023斯隆研究奖得主李远志联手, 验证了 1000万参数以下的小模型,在垂直数据上训练也可以学会正确的语法、生成流畅的故事、甚至获得推理能力。
此外,开发过程中还有一个插曲。
Karpathy很久不写C语言已经生疏了,但是在GPT-4的帮助下,还是只用一个周末就完成了全部工作。
对此,英伟达科学家Jim Fan评价为: 现象级 。
最初,在CPU单线程运行、fp32推理精度下,Baby LLaMA 2每秒只能生成18个token。
在编译上使用一些优化技巧以后,直接提升到每秒98个token。
优化之路还未停止。
有人提出,可以通过GCC编译器的-funsafe-math-optimizations模式再次 提速6倍 。
除了编译方面外,也有人提议下一步增加LoRA、Flash Attention等模型层面流行的优化方法。
Baby LLaMA 2一路火到Hacker News社区,也引发了更多的讨论。
有人提出,现在虽然只是一个概念验证,但本地运行的语言模型真的很令人兴奋。
虽然无法达到在云端GPU集群上托管的大模型的相同功能,但可以实现的玩法太多了。
在各种优化方法加持下,karpathy也透露已经开始尝试训练更大的模型,并表示:
70亿参数 也许触手可及。
GitHub:
https://github.com/karpathy/llama2.c
在浏览器运行Baby LLaMA 2:
https://ggerganov.com/llama2.c
参考链接:
[1]
https://twitter.com/karpathy/status/1683143097604243456
[2]
https://twitter.com/ggerganov/status/1683174252990660610
[3]
https://twitter.com/altryne/status/1683222517719384065
[4]
https://news.ycombinator.com/item?id=36838051
— 完 —
「AIGC算力全景与趋势报告 · 量子位智库」 下载
AIGC时代,算力成为「硬通货」。当前大模型的发展对算力产生新的需求,算力行业迎来变革机会。机遇当前,量子位智库发布《AIGC算力全景与趋势报告》,扫描下方二维码即可查看完整报告。
点这里 ???? 关注我,记得标星哦~
推荐帖子