在计算机和通信领域,为了降低系统功耗提高电源效率,系统工作电压越来越低;另外,随着信息技术和微电子工艺技术的高速发展,器件的特征尺寸越来越小,集 成电路的电源电压也越来越低。低电压器件的成本更低,性能更优,所以各大半导体公司都将3.3V、2.5V等低电压集成电路作为推广重点,如高端的 DSP、PLD/FPGA产品已广泛采用3.3V、2.5V甚至1.8V、1 5V供电。因此,低电压数字系统的电源设计,是电子工程师面临的严峻挑战。
1 采用低压差线性稳压器(LDO)
低压差线性稳压器的突出优点是具有最低的成本、最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。与传统的线性稳压器相比,它的 最大优点是输入输出压差很低。如78xx系列都要求输入电压要比输出电压高2~3V以上,否则不能正常工作。可是5V到3.3V的电压差只有1.7V,所 以78xx系列已经不能够满足3.3V或2.5V的电源设计要求。面对这类需求,许多电源芯片公司推出了Low Dropout Regulator,即低压差线性稳压器,简称LDO。当系统中输入电压和输出电压接近时,LDO是最好的选择,可达到很高的效率。这种电源芯片的压差只 有1.3~0.2V,可以实现5V转3.3V/2.5V、3.3V转2.5V/1.8V等要求。生产LDO的公司很多,常见的有:Maxim、 Linear(LT)、Nationa1 Semiconductor、TI等。
采用MAX8515作为稳压器,利用一个外部NPN晶体管和几只阻容元件可以方便地构成低成本、小尺寸的低压差线性稳压器(LDO),如图1所示。该电路 输入电压范围为1.2-2.5V,输出电压为IV。MAX8515的电源电压不同,R1的阻值就不同。输出电流可达2A。
改变分压电阻R2、R3可以调节输出电压。可参考式(1)选择R2和R3的值。
出于便携式电子产品布局布线的限制、对噪声敏感的应用及数码相机模块需要特殊电压等原因,分立的LDO仍在市场上顽强生存。LDO的发展方向,首先是高效 率,其次是不可避免地朝多功能集成方向发展,甚至被集成到PMU中。如AATI推出的AAT3223,集成了PowerOK功能,可监测LDO输出电压, 能在输出低于压范围时报警;同时还提供了省电引脚,引脚电压降抵时可使LDO进入关闭模式,从而延长电池寿命。又如安森美推出的以PWM和LDO双模式工 作的NCPl 501,在轻载下可由PWM模式转为LDO模式工作,1.8V下的效率为90%以上。
2采用电感开关型DC/DC转换器
电感开关型DC/DC转换器又称为开关型稳压器,包括升压、降压、升/降压和反相等几种结构,具有高效率、高输出电流、低静态电流等特点。随着集成度的提 高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
近几年随着半导体技术的发展,表面贴装的电感、电容以及高集成度的电源控制芯片的成本也不断降低,体积越来越小。低导通电阻的场效应管省去了外部大功率场 效应管,例如对于3V的输入电压,利用片内沟道场效应管可以获得5V/2A输出。对于中小功率的应用可以使用小型低成本封装。另外,高达lMHz的开关频 率能够降低成本、减小外部电感/电容的尺寸。某些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。
LTC3441是一种大电流微功率同步降压一升压DC/DC转换器。它通过对输出开关的正确调相使输入电压可以.高于、低于或等于输出电压,并且这三种条 件下操作模式的切换是连续的,所以该器件的输出电压总是能满足应用要求,是在单节锂离子电池应用中的理想选择。LTC3441能在效率高达95%的情况下 提供最高1A的输出电流。LTC344l的工作频率在出厂时被调到1MHz。在该器件的MODE/SYNC引脚施加一个两倍于期望开关频率的外部时钟 (2.3MHz~3.4MHz),振荡器可以与之同步,同步频率范围是1.15MHz~1.7MHz。LTC3441所进行的高频操作允许采用表面贴装的 电感器。为了获得高效率,电感器最好采用高频磁芯材料以减小磁芯损耗由于V1N为电源输入引脚,应用时最好在该脚布置一个至少4.7uF的低ESR旁路电 容器。LTC3441的典型应用电路如图2所示。
3 采用电容电荷泵型DC—DC转换器
电容电荷泵型DC—DC转换器常用于倍压或反压型DC—DC转换。电荷泵电路采用电容作为储能和传递能量的中介。随着半导体工艺的进步,新型电荷泵电路的开关频率可达1 MHz。电荷泵有倍压型和反压型两种基本电路形式。
基本的电荷泵电路成本较低。它的最大优点是无需电感,外围电路只需几个电容,体积较小,能够提供95%的效率,固定开关频率时产生较大的噪声和静态电流。 另外,这种结构的输出电压只能是输入电压的倍数,利用四个内部开关和一个外部飞电容(flylng capacitor)能够获得输入电压的2倍、1/2倍或一l倍输出,也可以使用多级结构获得其它倍数的电压,但成本和静态电流也会增加。所以,在传统的 设计中,电荷泵结构很少与电池直接相连,而是用于产生系统的辅电源,为小电路模块或某一器件供电;但从目前的发展趋势看,新型的电荷泵输出电流越来越大, 而便携式产品的功耗则越来越低,所以有些产品选用电荷泵做系统的主电源。
为了克服电荷泵电路固有的缺陷,将电荷泵与LDO相结合,可以得到任意的输出电压,而且降低了输出噪声,但效率也相应有所下降,下降幅度与输入输出电压有 关。新型电荷泵稳压器采用PFM或PWM方式,内部电路不需要LDO。与电荷泵+LDO结构相比,新型PFM方式的电荷泵具有低成本、低静态电流等特点, 但输出噪声略有增加、两种电路的效率基本相同。如果改变倍乘因子可以改善转换效率。例如转换两节碱性电池到5v,新电池时使用两倍压,而电池电压低于 2.5V时使用3倍压。升降压应用中,开始时使用降压而后来使用两倍升压,可以改善效率。
TPS6012x和TPS6013x是美国德州仪器公司推出的一种升压稳压的电荷泵型DC—DC:转换器,具有可调整的电压转换比例、更低的 成本、更简单的设计以及更少的电磁干扰等特点。TPS6012x可以接受两个碱性电池、镍镉电池或镍锰氢电池所提供的范围在1 8~3.6V之间的输入电压,产生3 3(1±O.04)v的输出电压以及200mA的最大输出电流。其转换效率可达90%,待命状态下所需的电流只有60 μA。TPS6013x可以接三个碱性电池、镍镉电池、镍锰氢电池或是一个锂离子电池所提供的范围在2.7~5 4v之间的输入电压,产生5.0(1±0 04)V的输出电压;而输出电流随元件型号不同有150mA和300mA两种。与其它直流电压转换器采用的电感器不同,它们使用电容器来储存电荷,避免了 电磁干扰带来的复杂问题。TPS6012x和TPS6013x只需要4个低价的外部电容,降低了整体系统成本。它们还提供“脉冲跳跃 ”的省电工作模式及“逻辑关机”工作模式。后者可把供应电流降低到O.05 μA,并且将电池与负载完全切断。
TPS60130的典型应用如图3所示。
LDO稳压器为电流输出要求较低的应用提供了体积小且价廉的解决方案,而电感开关型DC-DC转换器能保证高得多的电源转换效率,如果延长电池寿命是头等 要求,则是合理的选择。电容电荷泵型DC—DC转换器的转换效率比相同档次的电感开关型DC-DC转换器要低,但是成本也低。在设计低电压数 字系统的电源时,开发者要在系统整体方案的成本、体积、噪声和效率之间进行折衷。
总体而言,低电压、大电流、高效率、小尺寸、低成本是DC—DC转换器发展的趋势。从技术上看,零电流零电压开关、平面变压器原理、同步整流、超高开关频率、开放式结构等新型技术的应用,使得更高性能价格比的电源转换芯片不断出现。
1 采用低压差线性稳压器(LDO)
低压差线性稳压器的突出优点是具有最低的成本、最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。与传统的线性稳压器相比,它的 最大优点是输入输出压差很低。如78xx系列都要求输入电压要比输出电压高2~3V以上,否则不能正常工作。可是5V到3.3V的电压差只有1.7V,所 以78xx系列已经不能够满足3.3V或2.5V的电源设计要求。面对这类需求,许多电源芯片公司推出了Low Dropout Regulator,即低压差线性稳压器,简称LDO。当系统中输入电压和输出电压接近时,LDO是最好的选择,可达到很高的效率。这种电源芯片的压差只 有1.3~0.2V,可以实现5V转3.3V/2.5V、3.3V转2.5V/1.8V等要求。生产LDO的公司很多,常见的有:Maxim、 Linear(LT)、Nationa1 Semiconductor、TI等。
采用MAX8515作为稳压器,利用一个外部NPN晶体管和几只阻容元件可以方便地构成低成本、小尺寸的低压差线性稳压器(LDO),如图1所示。该电路 输入电压范围为1.2-2.5V,输出电压为IV。MAX8515的电源电压不同,R1的阻值就不同。输出电流可达2A。
改变分压电阻R2、R3可以调节输出电压。可参考式(1)选择R2和R3的值。
出于便携式电子产品布局布线的限制、对噪声敏感的应用及数码相机模块需要特殊电压等原因,分立的LDO仍在市场上顽强生存。LDO的发展方向,首先是高效 率,其次是不可避免地朝多功能集成方向发展,甚至被集成到PMU中。如AATI推出的AAT3223,集成了PowerOK功能,可监测LDO输出电压, 能在输出低于压范围时报警;同时还提供了省电引脚,引脚电压降抵时可使LDO进入关闭模式,从而延长电池寿命。又如安森美推出的以PWM和LDO双模式工 作的NCPl 501,在轻载下可由PWM模式转为LDO模式工作,1.8V下的效率为90%以上。
2采用电感开关型DC/DC转换器
电感开关型DC/DC转换器又称为开关型稳压器,包括升压、降压、升/降压和反相等几种结构,具有高效率、高输出电流、低静态电流等特点。随着集成度的提 高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
近几年随着半导体技术的发展,表面贴装的电感、电容以及高集成度的电源控制芯片的成本也不断降低,体积越来越小。低导通电阻的场效应管省去了外部大功率场 效应管,例如对于3V的输入电压,利用片内沟道场效应管可以获得5V/2A输出。对于中小功率的应用可以使用小型低成本封装。另外,高达lMHz的开关频 率能够降低成本、减小外部电感/电容的尺寸。某些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。
LTC3441是一种大电流微功率同步降压一升压DC/DC转换器。它通过对输出开关的正确调相使输入电压可以.高于、低于或等于输出电压,并且这三种条 件下操作模式的切换是连续的,所以该器件的输出电压总是能满足应用要求,是在单节锂离子电池应用中的理想选择。LTC3441能在效率高达95%的情况下 提供最高1A的输出电流。LTC344l的工作频率在出厂时被调到1MHz。在该器件的MODE/SYNC引脚施加一个两倍于期望开关频率的外部时钟 (2.3MHz~3.4MHz),振荡器可以与之同步,同步频率范围是1.15MHz~1.7MHz。LTC3441所进行的高频操作允许采用表面贴装的 电感器。为了获得高效率,电感器最好采用高频磁芯材料以减小磁芯损耗由于V1N为电源输入引脚,应用时最好在该脚布置一个至少4.7uF的低ESR旁路电 容器。LTC3441的典型应用电路如图2所示。
3 采用电容电荷泵型DC—DC转换器
电容电荷泵型DC—DC转换器常用于倍压或反压型DC—DC转换。电荷泵电路采用电容作为储能和传递能量的中介。随着半导体工艺的进步,新型电荷泵电路的开关频率可达1 MHz。电荷泵有倍压型和反压型两种基本电路形式。
基本的电荷泵电路成本较低。它的最大优点是无需电感,外围电路只需几个电容,体积较小,能够提供95%的效率,固定开关频率时产生较大的噪声和静态电流。 另外,这种结构的输出电压只能是输入电压的倍数,利用四个内部开关和一个外部飞电容(flylng capacitor)能够获得输入电压的2倍、1/2倍或一l倍输出,也可以使用多级结构获得其它倍数的电压,但成本和静态电流也会增加。所以,在传统的 设计中,电荷泵结构很少与电池直接相连,而是用于产生系统的辅电源,为小电路模块或某一器件供电;但从目前的发展趋势看,新型的电荷泵输出电流越来越大, 而便携式产品的功耗则越来越低,所以有些产品选用电荷泵做系统的主电源。
为了克服电荷泵电路固有的缺陷,将电荷泵与LDO相结合,可以得到任意的输出电压,而且降低了输出噪声,但效率也相应有所下降,下降幅度与输入输出电压有 关。新型电荷泵稳压器采用PFM或PWM方式,内部电路不需要LDO。与电荷泵+LDO结构相比,新型PFM方式的电荷泵具有低成本、低静态电流等特点, 但输出噪声略有增加、两种电路的效率基本相同。如果改变倍乘因子可以改善转换效率。例如转换两节碱性电池到5v,新电池时使用两倍压,而电池电压低于 2.5V时使用3倍压。升降压应用中,开始时使用降压而后来使用两倍升压,可以改善效率。
TPS6012x和TPS6013x是美国德州仪器公司推出的一种升压稳压的电荷泵型DC—DC:转换器,具有可调整的电压转换比例、更低的 成本、更简单的设计以及更少的电磁干扰等特点。TPS6012x可以接受两个碱性电池、镍镉电池或镍锰氢电池所提供的范围在1 8~3.6V之间的输入电压,产生3 3(1±O.04)v的输出电压以及200mA的最大输出电流。其转换效率可达90%,待命状态下所需的电流只有60 μA。TPS6013x可以接三个碱性电池、镍镉电池、镍锰氢电池或是一个锂离子电池所提供的范围在2.7~5 4v之间的输入电压,产生5.0(1±0 04)V的输出电压;而输出电流随元件型号不同有150mA和300mA两种。与其它直流电压转换器采用的电感器不同,它们使用电容器来储存电荷,避免了 电磁干扰带来的复杂问题。TPS6012x和TPS6013x只需要4个低价的外部电容,降低了整体系统成本。它们还提供“脉冲跳跃 ”的省电工作模式及“逻辑关机”工作模式。后者可把供应电流降低到O.05 μA,并且将电池与负载完全切断。
TPS60130的典型应用如图3所示。
LDO稳压器为电流输出要求较低的应用提供了体积小且价廉的解决方案,而电感开关型DC-DC转换器能保证高得多的电源转换效率,如果延长电池寿命是头等 要求,则是合理的选择。电容电荷泵型DC—DC转换器的转换效率比相同档次的电感开关型DC-DC转换器要低,但是成本也低。在设计低电压数 字系统的电源时,开发者要在系统整体方案的成本、体积、噪声和效率之间进行折衷。
总体而言,低电压、大电流、高效率、小尺寸、低成本是DC—DC转换器发展的趋势。从技术上看,零电流零电压开关、平面变压器原理、同步整流、超高开关频率、开放式结构等新型技术的应用,使得更高性能价格比的电源转换芯片不断出现。
关键字:数字电源
编辑:吕海英 引用地址:https://news.eeworld.com.cn/newproducts/others/200804/article_17847.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
上一篇:功率半导体 将迎来爆发之年
下一篇:电源管理迈入数字控制新时代
- 关注eeworld公众号
快捷获取更多信息
- 关注eeworld服务号
享受更多官方福利
推荐阅读
数字电源主控市场 ST拿什么亮剑?
数字电源因为具有高集成度、更快的瞬时响应等优势,被物联网等众多领域市场看好。基于此,数字电源的使用正在快速增长。由此,也带动了数字电源主控产品的发展,引得众多MCU厂商投身于此。ST于5年前进入数字电源主控市场,作为这个市场的新人,ST用什么赢得市场的青睐?五年磨一剑,G4与F3齐头并进2014年,ST以STM32F334进军数字电源主控市场。当时的数字电源市场,主要是由DSP产品主导。采用这种方式的产品,就促生了大量私有内核的产生。而这些私有内核的资源却都需要DSP供应厂商来支持。为了使数字电源使用更加方便,ST决定选择ARM通用内核来改善数字电源的使用环境。于是,ST在2012年发布的STM32F3系列之上,于两年后,针对数字
发表于 2019-06-25
实现紧凑设计 全桥谐振数字电源解决方案问市
致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于意法半导体(ST)M32F334R8 Cortex M4 MCU的,适用于电信设备电源的3kW全桥LLC谐振数字电源解决方案。 由大联大友尚推出的3kW隔离式全桥LLC DC-DC谐振转换器评估套件可将375V至425V DC输入电压转换为48V,63A最大电流—在电信应用中经常需要这种类型的转换。LLC转换器的全桥初级部分基于MDmesh™DM2功率MOSFET,可实现高效性能。PWM开关频率由数字控制,以调节输出电压。该转换器在接近谐振频率下工作,以最大限度地提高效率,并在整个工作范围内实现零电压开关(ZVS)。高频变压器提供电感隔离
发表于 2019-06-18
提高下一代数字电源应用性能 STM32G4微控制器问市
新数学加速器提高运算速度,节省电能 先进模拟外设允许设备集成更多的传感器和用户功能 更强的保护功能,提升数据安全性 新一代智能电子产品呈现出一些新的应用趋势:例如增加更多的传感器驱动功能,采用碳化硅、氮化镓等能效更高的功率技术来节省电能等。针对这些趋势,横跨多重电子应用领域的全球领先的半导体供应商意法半导体推出了下一代微控制器。 针对先进的数字电源应用以及消费电子和工业设备, STM32G4*新系列微控制器引入两个新的硬件数学加速器来提高应用的处理速度,利用Cordic算法和滤波函数等各种技术来提升性能和能效。数学加速器专门用于加快计算速度,例如,家电或空调的节能电机控制算法中的三角方法计算
发表于 2019-05-29
解析数字PFC控制器对电源的重要性
摘要: 功率因数校正(PFC)是缓解电能质量问题的关键,因为更多的无功源将连接到电网中。本文介绍功率因数对电源效率的影响,在交流系统中,数字PFC控制器通过对电感器电流的检测,如何以低损失来进行合适的功率因数改善。 低功率因数通常意味着较差的输入电流质量和较低的效率,这会给供应商、消费者带来成本负担。在交流系统中,低功率因数通常来自输入电流波形的失真,这就是为什么一些国际电气标准对电流中的谐波含量有严格的限制,以及为什么在某些情况下,有源[1]或无源功率因数校正几乎是强制性的。 理想交流系统的功率因数 在正弦交流系统中,功率因数是有效功率与总耗电量(视在功率)之间的关系,也就
发表于 2019-04-15
英飞凌XDP™ 数字电源平台LED应用系列新成员—XDPL8221
智能照明和物联网新趋势要求采用新一代LED驱动器。英飞凌科技(FSE: IFX / OTCQX: IFNNY)推出XDP™ 数字电源平台LED应用系列的新成员XDPL8221,助力实现智能照明。该器件是“PFC+Flyback”集成控制IC,实现PSR控制,并且带有通讯接口。该全新驱动IC在美国加州阿纳海姆APEC2019上进行了展示。XDPL8221具备诸多高级功能,可实现恒压、恒流和恒功率控制,运行参数可通过GUI配置。这可以帮助工程师们便捷地设计多功能和高性能的LED驱动器。XDPL8221方案能实现较高的效率。该驱动IC支持100 VAC~277 VAC或127 VDC~430 VDC的较宽输入电压范围。IC内置
发表于 2019-03-22
数字电源的理解误区有哪些?
作者:Fionn Sheerin——模拟电源和接口产品部的资深产品营销工程师Keith Curtis——MCU8部门的主管级技术工程师Tom Spohrer——MCU16部门的产品营销经理Terry Cleveland——模拟电源和接口产品部经理数十年来,模拟电源转换器一直是行业中的主流电子器件,数字电源则是许多设计人员相对陌生的产品。公众对于此类产品的评价见仁见智,有人称其为电源转换技术的新一代产物,也有人将其视作难以普及的奢侈品。现实情况是,数字电源转换技术可实现诸多新功能,极具系统优势,充分满足不同的设计需求。如果找到妥善合理的使用方式,数字电源能够发挥巨大作用,数字技术将使我们受益。为此,我们研究了常见的理解误区,希望帮助
发表于 2019-01-31
小广播
热门活动
换一批
更多
最新新品文章
- AMD二代 Versal™ SoC出道,单芯片扛下了AI三个阶段的全加速
- AI持续发热,Arm新一代Neoverse CSS V3和CSS N3为客户释放最优性能
- 米尔入门级i.MX6UL开发板的神经网络框架ncnn移植与测试
- 博格华纳向Wolfspeed投资5亿美元,保障高达6.5亿美元碳化硅器件年度产能供应
- 艾迈斯欧司朗推出新型高灵敏度三通道CMOS传感器,有效降低UV-A/B/C辐射监测成本
- 我国科学家实现658公里量子密钥分发和光纤振动传感
- 以铁代铂金,科学家发明低成本氢燃料电池
- 特斯拉汽车能用太阳能开1.5万公里?这种材料或许可以
- 美国可穿戴技术公司Eckto VR推出VR运动鞋“Ekto One”