数字技术中的模拟电路技术

最新更新时间:2008-05-19来源: 中国SMD资讯网 关键字:滤波器  屏蔽  常数  波形  噪声  振荡器  布线 手机看文章 扫描二维码
随时随地手机看文章

  由于数字电路是利用上升沿/下降沿很短的脉冲信号,所以会向外部放出包括高频成分的多余电磁波(噪声),而且对外部来的电磁波(噪声)敏感地响应,造成误动作。另外在电路内部也存在线间产生交调失真、数字器件的通/断时电流急骤变化引起电源电压变动等问题。这样就需要在数字电路中考虑布线的电感和寄生电容构成的分布常数电路、防止上冲、下冲造成波形的混乱及信号反射、延迟、衰减、线间电磁干扰的交调失真。而解决这问题的滤波器、屏蔽等都是模拟技术。   

  由于数字电路技术在汽车、火车、收音机控制中的应用,高可靠性地实现了以前用模拟技术无法实现的高功能。但是由于噪声会引起系统及电路误动作,尤其对机器为系统是致命的问题。而模拟电路即使有噪声,也只是暂时降低数据的精度,一旦噪声消失,就具有自我恢复功能的特征。因此将实现高功能的数字电路和具有自我恢复/自我确认能力的模拟电路组合应用,对防止移动控制系统、数字电路噪声引起的误动作将会是一种安全的方案。
电路设计时要特别注意的地方

  在电路设计后,为了进行工作验证,需要组装电路进行实验。但是结果会经常出现不按设计那样工作。例如设计的放大器却变成了振荡器,在模拟电路中由于混入数字电路来的噪声,使模拟信号的波形失真、工作不稳定、不能顺利得到数据。

  对低频电路来说,无论谁组装,只要布线不接错,各种不同的安装、布线、电路特性几乎没有差异,可得到相同的数据。但是高频却不同了,由于安装方法不同,一般会得到不同特性的数据。

  在高频电路及高速数字电路中,如果有一条线就会形成电感成分(寄生),如果有两条线则在线间就会形成寄生电容成分及互感成分(寄生),即所谓三寄生。所形成的三寄生数值是很微小的,因此在低频时几乎不成问题,但是在高频领域却不能忽略该C、L成分的影响(见图la、b)。

  最近为了提高机器的性能,经常将从低频到高频的模拟电路、高速数字电路、微型模拟电路及大电流电路等各种电路混在一起,这样会造成电路的不稳定及频率特性恶化。其中主要原因就是在设计时未充分考虑上述三寄生,而无法维持可靠性和安全性。

  另外,电路图中只用二维表现半导体器件及R、C、L的集中参数,但这并不能代表实际电路的性能和功能。实际的动作是三维空间,包括频率就是四维空间了。因此,由交调失真、反射、静电、电磁结合形成的微电流电路在高频电路中会对特性、功能造成影响。最近的IC想根据时代的要求,很多是高速动作的器件,对高频噪声的响应很敏感。因此在使用器件时要根据电路功能选择相应的元器件,尽量避免使用高于要求的高速IC。

  在电路图中通常将电源、地线、信号线的阻抗均按零欧姆考虑的。但是实际上是不存在零欧姆的,而且频率越高,电感和寄生电容的影响越大。结果,电路相互结合及外部电磁场的影响大到不能忽略的程度,造成电路不稳定及频率特性恶化。在模拟电路中应解决误差、噪声及时间延迟问题;而数字电路中解决抗噪声,通过同步使之不受时间延迟的影响,对改善电路特性是非常重要的。

  必须注意动态噪声“静电”的影响

  能引起电气设备误动作的噪声源很多,例如我们周围的日光灯、除尘器、无线电收发信机、变压器、变换器等。这些都是属于电磁场噪声源。除此之外,引起误动作的噪声源是静电放电。

  由于静电放电电流和瞬间产生的高电压会使IC破坏,从而使系统或设备造成误动作和故障。为了防止静电放电,从元器件的购买到设备的设计、生产和包装都要采取必要的措施。在设计方面可以采取以下措施:

  (1)避免使用超出要求的高速IC、特别是注意输入电路。在可能的情况下输入电路采用差分方式。滤波电路要紧靠IC连接。

  (2)对半导体进行输入保护。在连接器的输入部分为了使噪声控制在半导体耐压值以下而加入限幅电路。由于CMOS栅极抗静电噪声性能弱,所以不易用于连接器的输入部分。

  (3)避免使用边沿解发型IC,而使用选通方式或带门闩的电路。


  (4)为了抑制误动作的发生率,在控制端、输出端应做成低有效逻辑。

  (5)对高灵敏度的信号输入要进行滤波。将频带外的高频滤除,这对运算放大器不输入过大的信号是很重要的。还要注意所用电容器的引线电感。

  (6)在软件方面也要采取了一些措施。由于静电放电是一次性过渡脉冲,所以可通过多次校验检出错误数据。在微机中为了防止意外停止而设置看门狗电路(监视电路)。

  (7)电子电路及布线要远离放静电的金属机箱。

  (8)机箱的金属和金属连接部分要除去涂料紧密相接,尽可能加螺钉固定。

  为了减少由放电电流产生的电磁场影响,在印制电路板上应该采取如下措施:

  (1)减少环面积(参见图2)。

  在所形成的环中由于磁通交联,会在该环中感应电流,环的面积越大磁通交联的越多,感应的电流也就越大。因此为了使电源、地线所形成的环面积最小,应使电源和地线尽量接近布线。在电源、地线之间安装高频旁路电容,使环面积减少(参见图3)。为了减小信号线和地线之间形成的环面积,将信号接近地线进行布线。

  (2)使布线最短。要考虑信号线长度的分配,设计时将低有效信号线加长,而将高有效信号线做成最短。(参见图4)。各器件相互间的布线做成最短,并将连接在输入输出线上的器件安装在端子的附近。

  (3)使用多层线路板,这是在模拟电路及高速数字电路中觉见的。

  在高速数字电路中,脉冲信号的频谱具有非常宽范围的高次谐波成分。使用的工作频率越高,受寄生电容、电感的影响越大。假设具有电感L的图形上流过高频电流I,则电感L产生的压降为:

  V=L

关键字:滤波器  屏蔽  常数  波形  噪声  振荡器  布线 编辑:汤宏琳 引用地址:https://news.eeworld.com.cn/news/analog/200805/article_21157.html

上一篇:模拟芯片:本土厂商脱颖而出 前景乐观
下一篇:数字功放与模拟功放的区别

推荐阅读

贸泽开售 Vishay VEMI256A-SD2 EMI滤波器
为空间狭小型移动和有线通信设备提供理想选择2022年2月7日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 分销商贸泽电子(Mouser Electronics) 即日起开始备货Vishay Intertechnology的VEMI256A-SD2双通道EMI滤波器。VEMI256A-SD2设计为双通道滤波器阵列,有助于抑制电磁干扰 (EMI) 和射频干扰 (RFI) 以提供两条保护路径,同时为接口线路滤波提供强大的系统级静电放电 (ESD) 保护。贸泽电子备货的Vishay VEMI256A-SD2是一款高度集成的双通道滤波器,采用超紧凑的芯片级封装,非常适合空间狭小型应用。该器件拥有低泄漏电流,可提供更好
发表于 2022-02-07
贸泽开售 Vishay VEMI256A-SD2 EMI<font color='red'>滤波器</font>
射频前端滤波器及模组化成最大掣肘
在高频化趋势下,智能手机频带间距逐渐缩小,频带隔离难度日益提升,带宽、插入损耗和尺寸等性能要求也进一步提高,这些都对射频滤波器的设计和生产提出了更高的挑战。另一方面,从2G到5G,智能手机越来越轻薄、电池容量越来越大,智能手机中集成的射频前端器件越来越多,使得手机内部留给射频前端PCB的空间越来越有限,射频前端模块化将成为长期趋势。随着国产射频前端器件不断成熟,小型化可集成的滤波器资源不仅成为模组设计中的稀缺资源,同时也是国产射频前端模组当前最为突出的短板所在。在这一背景下,滤波器成为国产射频前端从低端分立器件走向中高端模组的破局关键,成立于2016年的杭州左蓝微电子技术有限公司(以下简称“左蓝微电子”)正成为这波模组化浪潮中
发表于 2022-01-29
射频前端<font color='red'>滤波器</font>及模组化成最大掣肘
射频前端滤波器及模组化成为最大掣肘
在高频化趋势下,智能手机频带间距逐渐缩小,频带隔离难度日益提升,带宽、插入损耗和尺寸等性能要求也进一步提高,这些都对射频滤波器的设计和生产提出了更高的挑战。另一方面,从2G到5G,智能手机越来越轻薄、电池容量越来越大,智能手机中集成的射频前端器件越来越多,使得手机内部留给射频前端PCB的空间越来越有限,射频前端模块化将成为长期趋势。随着国产射频前端器件不断成熟,小型化可集成的滤波器资源不仅成为模组设计中的稀缺资源,同时也是国产射频前端模组当前最为突出的短板所在。在这一背景下,滤波器成为国产射频前端从低端分立器件走向中高端模组的破局关键,成立于2016年的杭州左蓝微电子技术有限公司(以下简称“左蓝微电子”)正成为这波模组化浪潮中
发表于 2022-01-28
射频前端<font color='red'>滤波器</font>及模组化成为最大掣肘
总投55亿元,芯投微滤波器项目落户合肥
1月26日,旷达科技集团股份有限公司(以下简称“旷达科技”)发布公告称,公司重要参股公司芯投微电子科技(上海)有限公司(以下简称 “芯投微”)与合肥高新技术产业开发区管委会于当日签订了《芯投微滤波器芯片研发生产总部项目投资合作协议书》。图源:旷达科技公告公告资料显示,芯投微设立合肥芯投微电子有限公司作为项目主体公司,在合肥高新区建设滤波器芯片及模组研发、设计及生产总部项目,该项目总投资55亿元人民币,分两期实施。据公告介绍,此前旷达科技下属公司与建投华科投资股份有限公司联合设立专门的有限合伙企业并投资境内合资公司芯投微,通过芯投微控股滤波器子公司进入射频前端领域。芯投微将充分利用合肥市突出的区位、人才及科技资源优势投资建设项目工厂
发表于 2022-01-27
总投55亿元,芯投微<font color='red'>滤波器</font>项目落户合肥
DC/DC 电源使用外部滤波器的时机
在充满电子产品的现代社会很容易将 DC/DC 电源视为理所当然,因为它们无处不在而且一直使用着。然而电源在设计中的集成程度对应用的整体性能和功能都至关重要。本文将讨论 DC/DC 电源滤波器的重要性、要如何使用以及何时使用它们。过滤电源信号很重要所有 DC/DC 电源模块都有简单的集成滤波器,能够对抗一些常见的信号差异并确保模块执行基本功能,但有时电源设计人员自己有增加外部滤波电路的需求。能够让用户采用自己的外部滤波设计为用户提供了决定所需的过滤严格度或灵活度的弹性,这会很大程度影响产品的尺寸、价格和整体设计。例如,一些应用对传导 EMI 非常敏感,在大量使用机电设备的工业环境中这种传导 EMI经常过多。因此,想要在嘈杂的 EMI
发表于 2022-01-05
赛微电子:公司北京Fab3滤波器晶圆尚在验证过程中
11月30日,赛微电子在投资者互动平台表示,公司北京FAB3滤波器晶圆仍在验证过程中。资料显示,赛微电子的主营业务是MEMS芯片的工艺开发及晶圆制造,GaN外延材料研发生产及芯片设计,主要产品包括集微传感器、信号处理和控制电路、微执行器等。目前,赛微电子是全球排名第一的MEMS芯片专业制造厂商,一直致力于为全球通信、生物医疗、工业汽车、消费电子等各领域客户(包括知名巨头厂商及新兴中小厂商)提供一流的MEMS工艺开发及晶圆制造服务。赛微电子控股子公司聚能创芯具备GaN(氮化镓)外延材料设计生产、GaN芯片设计能力,已形成系列化标准产品或定制化产品,正在陆续生产、交付过程中;GaN材料和芯片在击穿电场、本征载流子浓度、抗辐照能力
发表于 2021-12-01
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 数字电视 安防电子 医疗电子 物联网

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved