对于传统乘用车而言,油箱是唯一的实际能源来源,故制造商们寻求在包括电子系统在内的所有汽车系统中节能,以进一步改善燃油经济性及二氧化碳(CO2)排放。随着汽车中增添的电子系统的数量不断增多,以增强汽车性能及安全性,并为购买者提供有吸引力的新功能,汽车中每个电子控制单元(ECU)的节能效果较低的话,就会使总油耗大幅增加。
芯片设计人员采用不同技术及途径,已经能够降低他们提供的器件的总能耗。在单个系统基础芯片(SBC)中结合多个器件的功能,并应用不同电源管理策略,还能帮助进一步降低总能耗。这些进展表示当今的内燃发动机汽车能够舒适安全地搭载乘客,而使用的燃油更少,碳排放更低。
增强型系统基础芯片
SBC为连接至汽车(CAN或LIN)总线的各种模块(如车门模块)提供电能、驱动器及连接功能。通常情况下,它们可能集成稳压器, 为控制器及传感器、高边和/或低边驱动器、收发器接口及唤醒或看门狗引脚等其它系统连接功能供电。在单片器件中集成这些功能且结合内置电源管理,跟使用分立元件相比,在功率、成本及尺寸方面具备优势。当今的SBC使用现有技术及电源管理,能提供约20 μA的休眠电流及约60 μA的待机电流。
在一款典型SPC中,片上稳压器通常是低压降(LDO)线性稳压器,如图1所示。基于这个原因,设计人员面临的主要挑战就在于散热管理,因为LDO功率耗散相对较高。对于5 V时150 mA的稳流供电电流而言,SBC应当能够耗散高达1.3 W的总功率。如果SBC的LDO包含内置旁路元件,此功率就在SBC封装内部耗散。用于需要更大电流(通常高于250 mA)的模块的SBC,通常设计为与外部旁路元件一起使用。这就有效分散SBC与外部MOSFET之间的功率耗散,从而能够扩展实用的环境温度范围。
提升电源电路的能效,如在某些或全部LDO处使用开关模式的DC-DC转换器,能够大幅降低汽车中每个CAN节点SBC的功率损耗额。这能帮助简化散热管理,还能提升燃油经济性。
在仔细选择转换器架构的情况下,采用开关模式DC-DC转换的SBC能为使用自动停止-启动(或微混合)技术的较新型车提供重要优势。自动停止-启动技术在汽车停下来 (如等候交通信号灯) 时关闭发动机,能够降低市区行驶的燃油消耗约15%至20%;当驾驶员踩下加速踏板(油门)时,发动机自动重启,使系统有效地工作,而且这个过程对驾驶人员而言是透明的。为了确保CAN总线上的所有系统都能够持续恰当地发挥功用,应用必须保持全面工作,即使是在发动机启动期间电池电压降至2.5 V那么低时,也是如此。在这种情况下,升压-降压DC-DC拓扑结构使SBC能够在所有工作条件下提供所要求的稳压输出电压。
局部网络
当今的汽车可能包含大量ECU,高端车型中的ECU数量可能多达100个左右。大多数ECU(如果不是全部的话)连接至CAN总线,因此,CAN总线始终是启用的。即使发动机熄火时,某些ECU必须保持工作,以维持遥控开锁(RKE)等功能的运作。这么多数量的ECU连接至总线,对总体电能消耗有重要影响。
局部网络(Partial Networking, PN)是一种用于降低能耗同时使ECU能够对唤醒指令作出响应的技术。系统仅在某些特定时刻根据需要启用部分网络,而其它节点保持在低功率状态。有几种可能的局部网络应用方案。针对公路用车颁布的CAN标准ISO 11898-6定义了选择性唤醒功能,作为以高速媒体存取提供局部网络的方式。当某个ECU不要求工作时,它可能断开与CAN网络的连接,只要没有特定指令传送给这个特别节点。
为了配合局部网络功能,各个节点要求专用收发器中内置“选择性唤醒功能”。这种选择性唤醒功能使不工作的ECU的电流消耗能降低至汽车制造商通常规定的100 µA平均待机电流极限范围内。即使有这样的省电效果,但连接至总线ECU数量众多,以致于对总线的总能耗进而对汽车的燃油消耗有较大影响。这种途径的另一项缺点就是跟每颗IC中必须包含的额外选择性唤醒电路相关的系统成本增加了。此外,网络内所有节点都需要软件适配,以配合应用局部网络。这就增加了较大的系统开发负荷。
引入 CAN中继器
通过将逻辑总线分割为两个物理部分,使其中某个完整部分在不用时断电,能够获得可贵的省电效果,如图2所示。这可以通过在连接至CAN总线的某个模块上引入双向中继器来实现。
常规模块包含一个连接至总线的CAN收发器,此收发器将物理CAN信号转换为由模块的微控制器(MCU)处理的数字信号。通常情况下,连接至总线的所有模块都是这种类型。增加一个带内置CAN中继器的模块会创建一个点,总线在此点能从物理上分为两个部分。
如图4所示,CAN中继器以与独立式CAN收发器类似的方式连接微控制器。在此器件内部,端口A上的每个信号传输至端口B,而端口B上的每个信号传输至端口A。CAN总线信号在微控制器中被解释(interpreted)。CAN总线数据的重复在中继器芯片内部完成。当接收到进入休眠(Go-to-Sleep)指令时,端口之间的连接被断开,有效地断开端口B上网络部分的连接。断开连接部分上的所有节点都可以进入极低能耗的休眠模式。
上一篇:CAN总线轿车车窗智能控制系统实现的原理
下一篇:如何提升汽车CAN总线能效以增强燃油经济性?
- 热门资源推荐
- 热门放大器推荐
- LT8304IS8E 18V 至 80Vin、48Vout 隔离反激式转换器的典型应用电路
- FRDM-K66F: 面向Kinetis® K66、K65和K26 MCU的Freedom开发平台
- 使用 Microchip Technology 的 SG337A 的参考设计
- 使用 NXP Semiconductors 的 TDA8933B 的参考设计
- 适用于 4-20 mA 输入的 12 位、300 kSPS、单电源、完全隔离的数据采集系统
- 使用 Epson America, Inc 的 S2S65P10 的参考设计
- 具有 MSP430 智能模拟组合并且由回路供电的 4mA 至 20mA RTD 温度变送器参考设计
- STC51-NUCLEO
- 1810300422孙浩文
- 使用 NXP Semiconductors 的 MC9S08JM60CLD 的参考设计