汽车行业掀起了一场技术变革:电动汽车 (EV) 和混合动力汽车 (HEV) 正大规模地投产,进入商业化运作。这意味着采用新型结构的汽车正在大量推出。从电子系统的角度来看,迄今为止用于电动汽车 (EV) 和混合动力汽车 (HEV) 的技术主要源自在过去数十年间最初是针对工业应用而开发的各种解决方案。由于汽车行业在商业上和技术上都有不同于工业系统的特定要求,因此需要开发专用的解决方案。
考虑到传动系统,特别是逆变器,xEV 的厂商将要应对三大挑战:提高能效、降低成本以及最终满足功能性安全要求。ISO26262 标准的引入推动了对智能型、高性价比电子解决方案的需求。
逆变器电子结构
图 1 代表了与永磁同步电机 (PMSM) 一起用于汽车的牵引逆变器的典型结构。它由三个主要部分构成:
• 低压 (LV) 侧的主要逻辑电路
• 驱动单元
• 与直流链接相连的 IGBT 功率模块。
驱动单元通常由单个 PCB 构成,PCB 的连接应尽可能靠近功率模块以最大程度降低 IGBT 栅极信号通路中的寄生元件的数量。
每个 IGBT 均由栅极驱动器驱动,该驱动器的主要功能为 :
• 提供低压和高压之间的电绝缘功能。一流的解决方案有赖于感应式、电容式隔离或光学隔离。
• 驱动 IGBT 栅极以使系统达到最高效率。这意味着器件应能够提供足够大的电流对栅极进行快速充电和放电。为达到这一目的,经常在驱动器和 IGBT 之间设置后驱动单元(或升压单元)。
• 提供基本的保护功能,如欠压锁定 (UVLO) 功能或去饱和保护 (DESAT) 功能。
除了上述这些功能,还对栅极驱动器提出了其他要求以达到安全标准。其中一个主要安全要求规定在出现故障时系统应可以防止或限制电机在车轮产生多余的力矩,这样不会出现司机无法控制车辆的情况。对于非同步电机来说,此类策略(相对)易于部署,这是由于系统的安全状态是通过打开所有开关实现;IGBT 是常态下处于关断状态的器件,因此安全状态是逆变器的默认状态。
对于永磁同步电机 (PMSM)来说,由于在高转速 (RPM) 下,磁激励可能导致过压,因此情况更为复杂。这会导致逆变器组件受到破坏。 例如基于机械子系统或斩波器的解决方案,数种方法在工业系统中通过应用证明其可行性,从而限制低于逆变器额定值的过压情况。但是,这些支持系统会产生额外成本,导致这一解决方案对于车用逆变器而言缺乏实际可用性。
抗故障主动短路 (ASC) 策略的部署可以实现系统的安全目标。该策略确保在每个单独的故障情况下,逆变器通过短接电机相线可产生 0 矢量(或称为主动短路)。
在这种状态下产生的普通制动转矩不会导致司机无法控制车辆。
为了具有抗故障的鲁棒性,支持主动短路 (ASC) 的结构有赖于:
• 冗余电源系统(通常由直流链接提供),该系统确保驱动板的某些关键功能始终启用从而使 IGBT 保持在打开的状态。
• 监控 IGBT 的状态以实时检查从主逻辑电路到 IGBT 自身的 PWM 命令是否具有一致性。
• 在应用生命周期中提高系统的可测试性,以跟踪系统的潜在故障。
分开实施此类措施不仅会显著增加材料清单成本,而且还会增加驱动板 PCB 的尺寸,这在满足汽车内部的空间局限要求上会产生问题。
数字驱动器:必要措施
为优化逆变器结构,应实施两种主要方案:
• 功能集成:每个新一代硅技术都可提升集成级别,意味着分立式功能可以在 ASSP 内集成。在许多汽车系统中均可发现相关的连续集成措施,特别是在传统的 ECU 上。
• 功能叠加:ASC 策略的实施依靠超越电隔离障碍传输一系列的信号。由于栅极驱动器已经内置了电隔离功能,因此是在电隔离通信通道中对多个功能进行叠加的理想选择。
为实现功能集成与功能叠加,栅极驱动器必须数字化,至少部分数字化。这个措施可以通过向栅极驱动器添加数字接口实现。至低压主要逻辑电路的通信链接将用于在系统启动时对器件进行配置,提供每一驱动器在运行期间的状态信息以及触发侵入式系统检测。应注意,通信链接并不一定要直接控制 IGBT 的开关行为,但可以视为
常规 PWM 命令的并行通道。鉴于此,标准中速通信接口,如串联外围设备接口 (SPI),会是不错的选择。
三种层级的诊断功能可采用上述方式集成:
• 栅极驱动器层级:监视振荡器、电源、内部数据完整性等。
• 故障注入层级:注入假设的故障(如虚拟的 DESAT 事件),检验系统是否能对此类事件做出正确反应。
• 信号一致性检验层级:通过 SPI 读取栅极驱动器发送和接收到的信号级别。
图3 显示了经优化的逆变器结构。
一些分立式安全功能已分布于系统的各个不同组件上。在驱动器中集成了先进的 IGBT 状态监视器和栅极监视器。这样在逆变器工作过程中可以对 IGBT 状态进行实时监控。例如,通过扩展大家熟悉的去饱和保护功能,可以对 IGBT 进行监视。
通常 DESAT 保护功能在打开状态下会对 IGBT 的 Vce 电压进行监视。当超过电压阈值(通常是 9V)时,在检测到短路状况时,IGBT 会自动关断。DESAT 的扩展功能可以实现对 Vce 电压的持续监控。比较器的结果被持续送往低压侧,信息以数字信号的形式提供给低压逻辑电路。智能型低压逻辑电路接下来可以
将 IGBT 状态与初始的 PWM 命令进行比较。需要使用延迟功能与过滤器以补偿超越电隔离障碍时的 IGBT 开关时间和传播时间。
在栅极驱动器内集成数字通信通道与栅极监视器的优点
将在以下章节中进行说明。
安全通道部署
本节提供的安全通道部署示例用于应对“低压电源缺失”的故障情况。此通道部署采用英飞凌新型栅极驱动器 EiceDRIVER™SIL 与后驱动单元 EiceDRIVER™Boost (图 4)
高压逻辑块接收来自低压侧的控制信号,该信号起着发布进入 ASC 模式命令的作用。该控制信号可通过栅极驱动器数字通道 (DIO1 / DIO2) 越过电隔离障碍进行传输。数字通道的低延时(通常是 2µs)可确保系统快速反应。 在正常工作期间通过数字通道传输的逻辑信号电平应是非默认电平,通常是高电平。低压电源一旦出现错误,监视 EiceDRIVER™SIL 5V 电源的欠压锁定 (UVLO) 功能将禁用 DIO2 信号。
在完成对 DIO2 信号的评估之后,高压逻辑电路将判定为 ASC 信号。该信号与升压器的专用输出端相连后将直接开启 IGBT,不论栅极驱动器发送的是何种 PWM 命令。为防止栅极驱动器(在低压电源缺失情况下栅极驱动器自动会试图关断 IGBT)与开启 IGBT 的升压器之间流经高交叉电流,ASC 信号被连接至栅极驱动器的 OSD 输出引脚。OSD 引脚捕捉到的主动电平使输出单元(即栅极驱动器的输出端 OUT)处于高阻抗状态(三态)。
由直流链接提供的紧急电源确保在 ASC 临界条件下(即在高直流链接电压、电机高转速下)高压逻辑电路、高压[Lw1]部分低压侧驱动器和升压器始终得到有效 15V (VCC2) 电源的供电。但是,主动 ASC 模式应仅在直流链接可提供有效 15V 电源的情况下由系统启用。否则一旦 VCC2 开始出现低于临界电压的情况,IGBT 将以线性模式工作,这可能造成器件较大损耗并最终可能因过热导致器件损坏。
为避免这种情况,栅极驱动器的 NUV2 信号在内部由 UVLO2 功能直接控制。NUV2 的工作原理类似于开漏信号。当有效的15V 电源电压施加在栅极驱动器上时, NUV2 呈现高电阻状态。但是,当施加无效电源时,ASC 信号会被主动地驱往低层级。在并联状态下,将检测到 OSD 引脚,栅极驱动器的输出单元将退出三态模式。这样可确保 IGBT 快速关断。
最后,应在应用生命周期中(例如,在系统启动时)定期对安全通道的正常使用进行检测。为此栅极驱动器的栅极监视器功能包含了一组比较器,比较器的状态可由 SPI 接口读取。接下来可以激活 ASC 信号进行检验并检查栅极电压是否达到了正确的阈值。
结论与概览
多年来汽车电子系统的总体趋势始终是日益集成化:微控制器的计算性能大幅提高导致硬件功能不断被软件取代;类似地,数字化也推动了功能集成度不断提高,提升了诊断功能。数字栅极驱动器的推出提供一系列新的可能性,可以通过有效方式达到未来逆变器系统的安全目标。
首先,在栅极驱动器内部集成主要以分立形式发挥作用的各种监控功能,可实现系统优化。其次,通过利用新式微控制器设计可以实现系统进一步优化。例如,作为微控制器中的 HW 扩展型外围设备的智能型 IO 监视器单元可将 IGBT 监视器发出的信号模式与初始的 PWM 命令(在内部以冗余方式产生)进行比较。这样低电压 (5V) 逻辑可以在系统出现故障时灵活地判断是在低压侧开关还是在高压侧开关施加 0 矢量。将各种功能分布在微控制器和栅极驱动器可移除在目前标准逆变器中使用的扩展型组件,如 FPGA 与 PLD。
上一篇:凌云自平衡两轮电动车,百公里加速3秒内
下一篇:具有远程控制功能的一键启动系统介绍
- #第八届立创电赛#数码管时钟
- 3相直流无刷电机驱动IC —— TC78B016FTG
- OM17057: 面向BGU6104低噪放大器、ISM和LTE频段的演示板
- 【训练营】物联网RGB小灯+713096A
- AN54,使用 LTC1142A 高效电源提供 3.3V/2A 和内置电池充电器的应用电路
- LM324ADR2G 维恩桥振荡器运算放大器的典型应用
- 具有 I2C 兼容监视功能的 LTC4215 和 LTC4215-2 热插拔控制器的典型应用
- 【RA】485采集控制节点+352794A
- ADR392B 4V 输出微功率、低噪声精密电压基准的典型应用
- TS5204 80mA 低噪声 LDO 稳压器的典型应用