一文读懂CAN总线/LIN总线/FlexRay/以太网,汽车总线的未来是它?

发布者:喜从中来最新更新时间:2018-01-20 关键字:汽车总线  CAN  bus  LIN  FlexRay  以太网  车载网络 手机看文章 扫描二维码
随时随地手机看文章

20世纪80年代后, MCU和MPU开始在汽车中被广泛使用,汽车电子化进程开始逐年加快。近几年,智能化和网联化在汽车行业兴起,汽车电子化程度更上一层楼。据统计,当前汽车的创新70%来源于汽车电子产品,电子产品成本占整车比例已经从上世纪70年代的4%,成长到现在的30%左右。未来仍将进一步提升,预期到2030年,该比例将可达到50%。在电子零部件越来越多,信息传输量越来越大的需求促动下,汽车网络化势头已经不可挡。因此,传统的电气网络已无法适应现代汽车电子系统的发展,新型汽车总线技术应运而生。

 

图|汽车总线

 

目前汽车上普遍采用的汽车总线有局部互联协议LIN和控制器局域网CAN,正在发展中的汽车总线技术还有高速容错网络协议FlexRay、用于汽车多媒体和导航的MOST以及与计算机网络兼容的蓝牙、无线局域网等无线网络技术。

 

在这里,与非网编辑主要讲解一下传统三大总线CAN、LIN、FlexRay和汽车总线“新贵”以太网,看一下每一个汽车总线的特点、优势和未来发展趋势。

 

CAN总线


CAN-BUS即CAN总线技术,全称为“控制器局域网总线技术(Controller Area Network-BUS)”。Can-Bus总线技术最早被用于飞机、坦克等武器电子系统的通讯联络上。将这种技术用于民用汽车最早起源于欧洲,在汽车上这种总线网络用于车上各种传感器数据的传递。

 

图|CAN总线

 

汽车上面布满了各种控制单元,越是高级的汽车,其控制单元越多,控制系统越复杂。每个控制单元都可看做一台独立的电脑,它可以接受信息,同时能对各种信息进行处理、分析,然后发出一个指令。比如发动机控制单元会接受来自进气压力传感器、发动机温度传感器、油门踏板位置传感器、发动机转速传感器等等的信息,在经过分析和处理后会发送相应的指令来控制喷油嘴的喷油量、点火提前角等等,其它控制单元的工作原理也都类似。在这里可以给大家做一个比喻,车上的各种控制单元就好比一家公司各个部门的经理,每个部门的经理接受来自自己部门员工的工作汇报,经过分析作出决策,并命令该部门的员工去执行。

 

部分汽车的控制单元之间的所有信息都通过两根数据线进行交换,这种数据线也叫CAN数据总线。通过该种方式,所有的信息,不管信息容量的大小,都可以通过这两条数据线进行传递,这种方式充分的提高了整个系统的运行效率。

 

图|CAN-BUS

 

总线系统之所以称作为CAN-BUS,其实也是因为它的工作原理与运行中的公共汽车很类似。每个站点相当于一个控制单元,而行驶路线则是CAN数据总线,CAN数据总线上传递的是数据,而公共汽车上承载的是乘客。某个控制单元接收到负责向它发送数据的传感器的信息后,经过分析处理会采取相应措施,并将此信息发送到总线系统上。这样此信息会在总线系统上进行传递,每个与总线系统连接的控制单元都会接收到此信息,如果此信息对自己有用则会存储下来,如果对其无用,则会进行忽略。

 

目前汽车上的CAN数据总线连接方式主要有两种,一种是用于驱动系统的高速CAN总线,速率可达到500kb/s,另一种是用于车身系统的低速CAN总线,速率为100kb/s。当然对于中高级轿车还有一些如娱乐系统或智能通讯系统的总线,它们的传输速率更高,可以超过1Mb/s。

接下来,我们看一下CAN总线有哪些优势:

 

·比传统的布线方式的数据传输速度更高。

·比传统布线方式要节省线束,降低了车身重量,同时优化了车身的布线方式。

·以CAN总线方式连接的控制单元中有一个发生故障,其它控制单元仍可发送各自的数据,互不影响。

·CAN数据总线为双线制,如果有一条发生故障,CAN系统会转为单线运行模式,提高了整车的稳定性。

·CAN系统的双线在实际中是像“麻花”一样缠绕在一起的,这样可以有效的防止电磁波的干扰和向外辐射。

·基于CAN总线系统可以实现更丰富的车身功能。

 

CAN总线是当前汽车总线应用最广的一种,但是由于自身安全性等原因,人们已经开始为CAN总线寻求合格的替代者, FlexRay、以太网是这个过程中呼声较高的。

 

LIN总线


LIN总线是针对汽车分布式电子系统而定义的一种低成本的串行通讯网络,是对控制器区域网络(CAN)等其它汽车多路网络的一种补充,适用于对网络的带宽、性能或容错功能没有过高要求的应用。LIN总线是基于SCI(UART)数据格式,采用单主控制器/多从设备的模式,是UART中的一种特殊情况。

 

图|车载网络示意图

 

LIN总线是面向汽车低端分布式应用的低成本,低速串行通信总线。它的目标是为现有汽车网络提供辅助功能,在不需要CAN总线的带宽和多功能的场合使用,降低成本。

 

LIN联盟成立于1999年,并发布了LIN01.0版本。最初的成员有奥迪、宝马、克莱斯勒、摩托罗拉、博世、大众和沃尔沃等。

 

LIN总线相对于CAN的成本节省主要是由于采用单线传输、硅片中硬件或软件的低实现成本和无需在从属节点中使用石英或陶瓷谐振器。这些优点是以较低的带宽和受局限的单宿主总线访问方法为代价的。

 

图|汽车总线示意图

 

LIN总线上的所有通讯都由主机节点中的主机任务发起,主机任务根据进度表来确定当前的通讯内容,发送相应的帧头,并为报文帧分配帧通道。总线上的从机节点接收帧头之后,通过解读标识符来确定自己是否应该对当前通讯做出响应、做出何种响应。基于这种报文滤波方式,LIN可实现多种数据传输模式,且一个报文帧可以同时被多个节点接收利用。

 

LIN总线是CAN总线的副手。未来,或许将随着CAN总线一起退出历史的舞台。


FlexRay


FlexRay是一种用于汽车的高速、可确定性的,具备故障容错能力的总线技术,它将事件触发和时间触发两种方式相结合,具有高效的网络利用率和系统灵活性特点,可以作为新一代汽车内部网络的主干网络。FlexRay是汽车工业的事实标准(facto standard)。

 

图|FlexRay

 

Flexray的拓扑结构多样,既可以像CAN总线一样使用线型结构,也可以使用星型结构。中心节点负责转发信息。当除中心节点外的某个节点损坏或线路故障时,中心节点可以断开与该节点的通信。但当中心节点损坏时,整个总线便无法工作。可以将多个星型总线的中心节点连接起来。

 

Flexray和CAN总线最本质的区别是总线分配的方式不同。CAN总线是采用CSMA/CA机制。各节点会一直监听总线,发现总线空闲时便开始发送数据。Flexray用的是TDMA(Time Division Multiple Access) 和FTDMA(Flexible Time Division Multiple Access)两种方法。Flexray将一个通信周期分为静态部分、动态部分、网络空闲时间。静态部分使用TDMA方法,每个节点会均匀分配时间片,每个节点只有在属于自己的时间片里面才能发送消息,即使某个节点当前无消息可发,该时间片依然会保留(也就造成了一定的总线资源浪费)。在动态部分使用FTDMA方法,会轮流问询每个节点有没有消息要发,有就发,没有就跳过。静态部分用于发送需要经常性发送的重要性高的数据,动态部分用于发送使用频率不确定、相对不重要的数据。

 

图|FlexRay

 

Flexray相比较于CAN总线要复杂许多,安全性相对较高。但是,Flexray总线也有其弊端,就是造价成本过高,除了德系车厂在量产车上使用过,其他国家极少见。随着汽车电子化程度的增加,对总线带宽的要求也越来越高。用Flexray来取代原来普遍使用的CAN总线是不现实的,因为成本实在太高。

 

以太网


新的汽车功能,如自动泊车系统、车道偏离检测系统、盲点检测和高级信息娱乐系统等引发了对新的数据总线需求。显然,未来我们需要的是更加开放、高速,且易于与其他电子系统或者设备集成的车载网络,同时有助于减少功耗,线束重量和部署成本。

 

图|多功能汽车系统示意图

 

传统车载网络支持的通信协议较为单一,而车载以太网可以同时支持AVB、TCP/IP、DOIP、SONIP等多种协议或应用形式。其中,Ethernet AVB 是对传统以太网功能的扩展,通过增加精确时钟同步、带宽预留等协议增强传统以太网音视频传输的实时性,是极具发展潜力的网络音视频实时传输技术。SOME/IP(Scalable Service-Oriented MiddlewarE on IP)则规定了车载摄像头应用的视频通信接口要求,可应用于车载摄像头领域,并通过API实现驾驶辅助摄像头的模式控制。

 

作为AVB协议的扩展,车载时间敏感网络(TSN,  Time-Sensitive Networking)则引入时间触发式以太网的相关技术,能高效的实现汽车控制类信息的传输。此外,1Gbit 速率通信标准的车载以太网同时还支持 POE(Power Over Ethernet)功能和高效节能以太网(EEE, Energy-Efficient Ethernet)功能,POE 功能可在双绞线传输数据的同时为连接的终端设备供电,省去了终端外接电源线,降低了供电的复杂度。

 

图|车用以太网

 

当前,以太网和CAN的连接通过以太网网关来实现。以太网目前还不是用来取代CAN的,主要还是应用在非CAN的部分。车载以太网不仅具备了适应ADAS、影音娱乐、汽车网联化等所需要的带宽,而且还具备了支持未来更高性能的潜力(如自动驾驶时代所需要的更大数据传输)。它将成为实现多层面高速通信的基石,相对于20世纪90年代的控制器局域网(CAN)革命,它的规模将更大,意义将更深远。专家预测,到2020年,汽车中部署的以太网端口将达5亿个。

 

研究人员表示:“CAN通过变频变换来控制,这比以太网好,因此在一段时间内都不会被以太网取代。但是到2021年以后,随着ESN这个新以太网协议推出,估计汽车会陆续去掉CAN总线,而仅有以太网通信。”


关键字:汽车总线  CAN  bus  LIN  FlexRay  以太网  车载网络 引用地址:一文读懂CAN总线/LIN总线/FlexRay/以太网,汽车总线的未来是它?

上一篇:认识高速接入单元“ISO11898-2”
下一篇:详解LIN/CAN/FlexRay/MOST四大汽车总线

推荐阅读最新更新时间:2024-07-25 19:58

CAN信号中位定时段的规格
  CAN通讯中使用的是同步数据传输,CAN控制器在其通讯过程中会不停出现位同步的操作,但不同的数据通讯系统对位同步的要求是不同,为了满足其要求,我们必须更加深入的来探讨另一个概念叫位 定时段的规格。   位定时段的规格是根据数据通信系统的需求而确定的。如果要在特定位速率下实现最大的 总线长度或者在给定总线长度的情况下实现最短的等待时间(最大位速率),那么用于重新同步的保留时间( 相位缓冲段)必须保持最小。当时间缓冲段设定为最小值时,表示在一次重新同步当中只能校正|e|=1的相位误差。因此对位同步的要求非常高,要满足这样的要求只能使用精确的石英晶振(石英晶振的误差通常小于0.1%.)。        图 1
[嵌入式]
10 Mbps/100 Mbps/1000 Mbps双通道、低功耗工业以太网PHY
评估和设计支持 电路评估板 CN-0506电路评估板(EVAL-CN0506-FMCZ) 设计和集成文件 原理图、布局文件、物料清单 电路功能与优势 图1所示电路是一种双通道、低延迟、低功耗的以太网物理层(PHY)卡,支持10 Mbps、100 Mbps和1000 Mbps速度,适合于采用线形和环形网络拓扑的工业以太网应用。 双通道支持常用于工业检测、控制和分布式控制系统的线形和环形网络拓扑。ADIN1300以太网PHY针对电磁兼容性(EMC)和静电放电(ESD)鲁棒性进行了广泛的测试,并支持自动协商,能够以宣传的最高通用速度与远程PHY器件链接。PHY中的IEEE 1588时间戳降低了实时应用中的时序
[网络通信]
10 Mbps/100 Mbps/1000 Mbps双通道、低功耗工业<font color='red'>以太网</font>PHY
基于CAN的电源控制系统设计
  CAN总线是一种能有效支持分布式控制系统的串行通信网络,一方面,其通信方式灵活,可实现多主方式工作,还可实现点对点、点对多点等多种数据收发方式;另一方面,他能在相对较大的距离间进行较高位速率的数据通信,例如在3.3 km的距离内其传输速率可达20 kb/s。我们的系统是由上位机对多台并列的单电源控制系统进行控制管理,单电源的间距在100 m左右,且其必须置于较高的位置,系统之间要进行快速的数据传输,CAN总线能很好的满足该系统的要求。   1 系统总体结构   图1是该集散电源控制系统的结构示意图。      其中:CAN0节点是上位机。   本系统用的是C51单片机,外接CAN控制器SJA1000,他对下面多台下位机传送控制
[电源管理]
基于<font color='red'>CAN</font>的电源控制系统设计
基于CAN总线EPB驻车电流采集节点的设计与研究
  电子驻车制动系统(EPB)指将行车过程中的临时性制动和停车后的长时性制动功能整合在一起,并且由电子控制方式实现停车制动的技术。为了能够获取各车辆已施加的理论驻车压力,并监控各车辆一体化执行机构的工作状态,防止驻车电机长时间工作在大电流状态,防止驻车电机过热烧毀,EPB一般配有驻车车电流采集节点,并通过CAN总线将驻车电流发送给中央控制节点(ECU)。文中主要介绍了基于AD574A的驻车电流采集节点的接口设置、采集方法及软件设计。   1系统硬件设计   驻车电流采集节点的硬件电路设计包括CAN总线通讯电路设计与车速采集电路设计两部分,如图1所示。   图1系统硬件接口原理图   1)CAN总线通讯电路设计   CAN
[单片机]
基于<font color='red'>CAN</font><font color='red'>总线</font>EPB驻车电流采集节点的设计与研究
Classic Autosar下的以太网通信架构概览
前言 为了让汽车更加智能,智能网联和智能驾驶功能喷涌而出。满足这些需求,就对传统的以CAN通信为核心的电子电器架构带来严峻的考验。对网络负载,传输速率等方面都提出了更为严格的挑战。同时,随着汽车电动化进程的加速推进,人们对汽车音视频系统的需求越来越高,外部电子产品控制车辆以及彼此交互的场景不断扩大,对网络带宽也提出了更大的挑战。由此,车载以太网应运而生。以太网的首要优势在于支持多种网络介质,同时物理介质与协议无关,因此以太网可以在汽车领域做相应的调整与拓展,形成完整的车载以太网协议。本文简要介绍Classic Autosar下的以太网通信架构。 1.AUTOSAR中以太网功能架构概览 在Classic Autosar架构体系下
[嵌入式]
Classic Autosar下的<font color='red'>以太网</font>通信架构概览
解析工程师所熟知的CAN、UART、IIC、USB等协议解码
随着硬件架构的不断更新,示波器早已不是只能“示波”的仪器了,协议解码就是典型代表!IIC、SPI、UART、CAN、LIN…我们为ZDS系列示波器最多免费配备了37种协议解码分析插件,这么多协议分别用在哪些地方,具体又如何使用呢? 示波器从模拟示波器发展到数字示波器,带来了许多大的改变,例如信号采集、带宽、采样率、屏显等。同样,这样的改变也体现在“协议解码”上,新的解码方式将人们从“0”,“1”的世界中解放出来,大大提高了工作效率。 最初的示波器只是一个简单的波形显示兼数据测量,而我们需要获取协议波形深层次的含义,从而去了解通信的数据正常传输。例如:观察IIC协议,我们需要按照时钟与数据信号一位一位对应,去进行0/1的组合转换,
[汽车电子]
解析工程师所熟知的<font color='red'>CAN</font>、UART、IIC、USB等协议解码
T-box和以太网对车联网与自动驾驶安全意味着什么?
  不久前,奥迪发布了全球首款实现Level 3(SAE)级别 自动驾驶 的量产车引发了广泛的关注。不过,距离大部分汽车都拥有自动驾驶功能以及实现全部汽 车联网 仍需时日。为了能够让大部分人能接受自动驾驶,备受关注的安全问题如何解决?   提到自动驾驶汽车的安全问题,除了特斯拉Autopilot自动驾驶系统问题导致驾驶员的死亡事件之外,许多人还会想到2015年夏天白帽黑客查理·米勒和克里斯·瓦拉塞克通过车载娱乐系统进入整车CAN总线入侵了一辆Jeep切诺基获得了车辆的控制权,还有2016年中国黑客通过CAN总线控制了特斯拉行车系统。屡屡爆出的自动驾驶汽车安全事件不仅牵动着汽车厂商的神经,也让普通消费者对自动驾驶的安全性产生了更大的
[嵌入式]
STM32 "flash download failed - Target dll has been cancelled"错误解决办法
在用mdk通过stlink烧写官方例程到stm32f429I discovery时,烧写了十来个程序都没问题,突然在烧写一个程序时,弹出了“flash download failed - Target dll has been cancelled”,然后后续的烧写都失败了。 原因可能是其中一个程序将stm32开发板设置成了休眠模式,导致后续的烧写都失败了。 从keil论坛帖子中 看到可以通过st-link utility来将flash全部擦除就能烧写了。 从http://www.st.com/web/en/catalog/tools/PF258168下载st-link utility并安装,选择Target- Conn
[单片机]
STM32 cancelled"错误解决办法" />
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved