数字信号处理推动雷达信号链向数字化过渡

发布者:采菊东篱下最新更新时间:2018-04-22 来源: 社区化关键字:GSPS  数字信号处理  adc 手机看文章 扫描二维码
随时随地手机看文章

现代高级雷达系统正在受到多方面的挑战——频率分配上的最新变化导致许多雷达系统的工作频率非常接近。通信基础设施和其他频谱要求极高的系统。未来,频谱拥塞状况预期会更严重,问题将恶化到雷达系统需要在运行时进行调整以适应环境和运行要求,这使得雷达系统需要向认知化和数字化发展。


更多数字信号处理的需求推动雷达信号链要尽早向数字化过渡,使得ADC更靠近天线,这进而又会带来若干具挑战性的系统层面难题。为了更深入地讨论这个问题,图1显示了目前典型的X波段雷达系统的高层次概略图。该系统通常使用两个模拟混频级。第一级将脉冲式雷达回波混频至约1 GHz频率,第二级混频至100至200 MHz的中频(IF),以便能够利用200 MSPS或更低的模数转换器对信号进行12位或更高分辨率的采样。


图1. 使用第一和第二中频(IF)的雷达接收机架构示例


在该架构中,频率捷变和脉冲压缩等功能可在模拟域中实现,这可能需要对信号处理进行一些更改和调整,但大体而言,系统功能受限于数字化速率。应当注意,即使以200 MSPS的数据速率进行采样,雷达处理也能向前跨进一大步,但我们正在向新的阶段突破,步子必须再迈大一点,实现全数字化雷达。


挑战


近年来,每秒千兆采样(GSPS) ADC已将系统中的数字化点推进到第一混频级之后,使得数字化转变更接近天线。模拟带宽超过1.5 GHz的GSPS转换器已然能够支持第一中频的数字化,但在许多情况下,当前GSPSADC的性能限制了这种解决方案的接受程度,因为器件的线性度和噪声频谱密度不满足系统要求。


另外,高速ADC与数字信号处理平台(通常是FPGA)之间的数据移动,直到最近还是以并行低压差分信号(LVDS)接口为主要途径。然而,使用LVDS数据总线从转换器输出数据会带来一些技术难题,因为单条LVDS总线所需的工作速率将远远超过IEEE标准的最大速率以及FPGA的处理能力。为了解决这个问题,输出数据需要解复用到两条或(更一般地)四条LVDS总线,以便降低每条总线的数据速率。


例如,采样速率超过2 GSPS的10位ADC通常将需要对输出进行4倍解复用,LVDS总线宽度将达40位。而许多雷达系统,尤其是相控阵,会采用多个GSPS ADC,如此多的通道需要布线和长度匹配,硬件开发很快就会变得无法管理,更不用说互连所需的FPGA引脚数量!


新型GSPS ADC不仅能克服现有挑战,而且可进一步优化系统。为使数字化更接近天线,此类转换器提供无与伦比的线性度和3 GHz以上的模拟带宽,支持L波段和大部分S波段的欠采样。这样,在这些波段内就可以直接进行RF采样,而无需混频器级,器件数量和系统尺寸得以缩减。更高频率的系统也能使用更高中频,从而可以减少混频级和滤波器的数量,并且由于能够使用宽范围的中频,频率规划选项得以增加。


更高的线性度和更低的噪声频谱密度使此类新器件能够用于下一代雷达系统。随着频谱密度提高,必须提供更高的动态范围才能管理雷达回波频率附近的阻塞或干扰信号。


最新的GSPS ADC能够提供75 dBc以上的SFDR,比最近十年面市的器件高出近20 dBc。与新近的通信基础设施频率分配相竞争时,这一跨越式进步显得更加重要。


解决方案


模拟带宽、线性度和噪声方面的改善可以被看作是器件制造商的下一步逻辑发展。不过,新型GSPS ADC的两个新增特性可为系统设计师带来更大的便利,有可能会提高这些器件在未来系统中的接受程度:


JESD204B数据链路接口; 转换器中嵌入的DSP功能,这对系统设计师非常有利,并且可以节省功耗。


JESD204B数据链路接口优势


若干高速ADC最近已引入JESD204B数据链路,但它对GSPS转换器最有好处,因为LVDS接口已很难满足系统需求。JESD204B是一种高速串行标准,支持利用更少数量的差分互连(FPGA引脚)实现高速ADC与FPGA或其他处理器之间的数据传输。它是一种开销非常低的协议,基于8b10b编码方案,支持高达12.5 Gbps的波特率。


下面以ADI的新型2.0 GSPS、12位转换器AD9625为例来讨论其优势。该转换器的输出数据速率是24 Gbps。假设LVDS数据总线的最高速率是1Gbps,并且忽略数据包装问题,那么将需要24个LVDS对才能支持此接口,硬件布线时,所有对的PCB走线长度都需要匹配。若采用最大波特率为6.25 Gbps的JESD204B,则只需要6条JESD204B链路就能支持此转换器的输出。图2清楚显示了其优势,AD9625与FPGA之间仅需布设8条JESD204B通道即可支持全数据速率2.0 GSPS。


图2. 采用JESD204B的GSPS FPGA夹层卡(FMC) PCB布线


此外,当使用多条JESD204B通道时,PCB走线长度匹配的要求大幅放松,因为标准仅要求通道间对齐精度达到920 ps,各JESD204B通道的路径延迟允许存在较大的差异。JESD204标准的最新“B”版还支持确定性延迟,可以计算离开高速ADC的数据与到达FPGA的数据之间的延迟。如果该延迟时间可以确定,那么就可以在数字后处理中予以补偿,使数据流重新对齐并同步,这是采用GSPS转换器的相控阵和波束成形系统的关键要求。


JESD204B对硬件设计师特别有利,但新型高速ADC的最大好处可能是增加了数字信号处理。AD9625等新一代GSPS转换器基于65 nm或更小几何尺寸的CMOS工艺,能够以非常高的数据速率支持各种各样的数字信号处理。近期而言,高速ADC将嵌入运行时可选的数字降频转换器(DDC),如图3所示。


转换器中嵌入的DSP功能


雷达波形带宽因应用不同而有很大差异,例如,某些合成孔径成像雷达波形需要数百MHz的带宽,而跟踪雷达使用的波形带宽可能只有数十MHz或更少。过去,若GSPSADC更靠近天线,则意味着在某些情况下会有大量不需要的带宽被传输到FPGA或处理器。在现代FPGA和高速ADC中,如果不是大部分,也有相当一部分功耗与器件的接口相关,因此,毫无用处地传输大量不需要的带宽会提高系统功耗。在未来的多模式雷达中,动态使能DDC的能力将是一大优势,可减轻FPGA的复杂处理负荷。


图3. 带嵌入式DSP的新型GSPS ADCMS-2670


DDC集数字数控振荡器(NCO)和抽取滤波器于一体,能够在高速ADC的奈奎斯特频段内选择信号带宽和信号位置,仅将需要的适当数据传输给信号处理器件。例如,考虑一个在800 MHz的中频使用30 MHz带宽波形的雷达。如果用一个ADC以2.0 GSPS的采样速率进行12位分辨率的采样,则数据输出带宽将是1000 MHz,远远超过信号带宽,转换器的输出数据速率将达3.0 GB/s。如果利用DDC以16倍的比率抽取数据,则不仅能进一步降低噪声,而且输出数据速率降至625 MB/s以下,这样只需使用一条JESD204B通道就能传输数据。整体系统的功耗需求将因此而大幅降低。由于可根据需要动态配置DDC或予以旁路,新型高速ADC可在不同模式之间切换,以便支持针对功耗和机具进行优化的解决方案,并且帮助实现认知式雷达应用所需的特性集合。


结论


AD9625等新型GSPS ADC为雷达系统架构师提供了多种重要的选项,其模拟带宽和采样速率有助于减少器件数量或进行直接RF采样。JESD204B接口和嵌入式DSP选项使得设计师获取这些优势再也不需要付出提高功耗和板复杂度的代价。动态配置高速ADC的能力可实现多功能支持,满足创建全数字式认知雷达系统的需求。

关键字:GSPS  数字信号处理  adc 引用地址:数字信号处理推动雷达信号链向数字化过渡

上一篇:新能源二手车市场现状:难出手_回收体系不完整
下一篇:基于“充电难”以及燃油车占位的解决方案

推荐阅读最新更新时间:2024-07-25 20:04

电路设计_STM8S003F3P6 AWU&ADC使用小结
序言 现象:当ADC初始化之后,再进休眠,那么AWU唤醒会出现异常,表现为唤醒不成功。 解决办法:在睡眠唤醒之后初始化ADC,在进休眠之前关闭ADC功能。 工作模式 Run mode 正常运行模式,功耗最大。 Wait mode 在运行模式下执行WFI(等待中断)指令,可进入等待模式。此时CPU停止运行,但外设与中断控制器仍保持运行,因此功耗会有所降低。等待模式可与PCG(外设时钟门控),降低CPU时钟频率,以及选择低功耗时钟源(LSI,HSI)相结合使用,以进一步降低系统功耗。参见时钟控制(CLK)的说明。 在等待模式下,所有寄存器与RAM的内容保持不变,之前所定义的时钟配置也保持不变(主时钟状态
[单片机]
电路设计_STM8S003F3P6 AWU&<font color='red'>ADC</font>使用小结
混合域示波器在模数转换器的用途
模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大小。 模拟数字转换器的分辨率是指,对于允许范围内的模拟信号,它能输出离散数字信号值的个数。这些信号值通常用二进制数来存储,因此分辨率经常用比特作为单位,且这些离散值的个数是2的幂指数。例如,一个具有8位分辨率的模拟数字转换器可以将模拟信号编码成256个不同的离散值(因为2^8=
[测试测量]
低功耗ADC技术延长电池续航时间
  在便携式传感器、4至20mA控制回路或具有模数转换器(ADC)的其他系统设计中,功耗越低,意味着电池续航时间越长,控制系统功能越强。在选择满足应用的功率预算的ADC时,可使用多种技术和折衷方案。   降低功耗最明显的方法是采用电源电压较低的ADC。如今的ADC可以采用3、2.5甚至1.8V的模拟和数字电源供电,5至3V的电压降可以实现40%的即时省电。   降低数字电源电压会引起两个不利因素:ADC上需要一个独立的数字电源引脚,并且数字输出端可能出现较低的驱动电流。通过降低模块电源电压来降低功耗时,主要问题是信噪比(SNR)较低。不过现在的低噪声处理技术和设计技巧可以确保现在的低压ADC的SNR与模拟电源电压较高的大功
[电源管理]
低功耗<font color='red'>ADC</font>技术延长电池续航时间
ADI推出新一代高精度逐次逼近型模数转换器AD4003和AD4000
中国,北京 Analog Devices, Inc. (ADI)近日推出新一代高精度逐次逼近型(SAR)模数转换器(ADC)AD4003和AD4000,以独特的方式将高性能、低功耗、小尺寸和易用性结合于一体。这些集成电路芯片不仅能够确保移动测试和测量仪器在现场持续工作更长时间,同时还能提高测量精度和可重复性。两款新器件有助于开发尺寸更小的仪器,可靠近受测传感器放置,或容纳更多的数据采集通道。具有这些特性的仪器可提高现场测试的效率,降低新产品表征时间相关成本。 2 MSPS采样速率的SAR ADC AD4003(18位)和AD4000(16位)具有高性能且易使用,因此大大减轻了系统设计人员的工作负荷,能够在更短的设计周期内实现
[模拟电子]
ADI推出新一代高精度逐次逼近型<font color='red'>模数转换器</font>AD4003和AD4000
STC12C5A60S2汇编(ADC查询方式)示例程序
STC12C5A60S2汇编(ADC查询方式)示例程序 ;/*Declare SFR associated with the ADC */ ADC_CONTR EQU 0BCH ;ADC control register ADC_RES EQU 0BDH ;ADC high 8-bit result register ADC_LOW2 EQU 0BEH ;ADC low 2-bit result register P1ASF EQU 09DH ;P1 secondary function control register ;/*Define ADC operation co
[单片机]
有高精度绝对读数的低成本旋转编码器
旋转 编码器 通常用于带伺服反馈的定位系统,这种情况下,编码器的成本一般并不重要。但编码器也会用于对某些用户界面上旋钮位置的编码,例如 音频系统 上的音量旋钮。对于这些旋钮,可以为求低价、高精度和绝对读数值而选择 电位器 ,但它们行程有限,通常不到340°,或者可选择光机式旋转编码器,它的行程没有限制,但价格较高,精度低,只有相对读数值。本设计实例尝试将两者结合起来,兼具了电位器的优点,以及光机旋转编码器无边界操作的特性。 编码器采用了标准电位器的结构技术,因此便于生产。它基本上是一个双电刷正交式无界电位器。它有一个全圆的阻性材料环,两端接电,两个电气独立的刷片在上面移动。两电刷片相互间为90°角的机械连接(图1)。 微
[嵌入式]
CTSD ADC—第1部分:如何改进精密ADC信号链设计
摘要 精密信号链设计人员面临着满足中等带宽应用中噪声性能要求的挑战,最后往往要在噪声性能和精度之间做出权衡。缩短上市时间并在第一时间完成正确的设计则进一步增加了压力。持续时间Σ-Δ (CTSD) ADC本身具有架构优势,简化了信号链设计,从而缩减了解决方案尺寸,有助于客户缩短终端产品的上市时间。为了说明CTSD ADC本身的架构优势及其如何适用于各种精密中等带宽应用,我们将深入分析信号链设计,让设计人员了解CTSD技术的关键优势,并探索AD4134 精密ADC易于设计的特性。 简介 在许多数字处理应用和算法中,在过去的20年里,日益要求所有转换器技术都具有更高的分辨率和精度。通过使用外部数字控制器,借助平均和优化的滤波
[模拟电子]
CTSD <font color='red'>ADC</font>—第1部分:如何改进精密<font color='red'>ADC</font>信号链设计
基于SHARC 2147x处理器的浮点数字信号处理
浮点数字信号处理已成为精密技术的一贯需求,航空、工业机器和医疗保健等领域要求较高精度的应用通常都有这个需求。医疗超声设备是目前在用的最复杂的信号处理机器之一,并且逐渐向便携式领域扩展。其面临的挑战在于要在不牺牲系统性能的条件下实现这种密集信号处理。凭借低功耗SHARC 2147x处理器的推出,ADI公司已经完全能够解决提供精密处理同时降低功率预算以实现便携式超声等应用的挑战。 本文讨论了便携式超声设备的使用、所用的处理技术以及SHARC 2147x系列处理器如何以最低功耗水平提供必要功能。 不牺牲性能的便携性 像超声系统等关键护理技术要求不管是临床还是远程使用都必须具备足够的可靠性和一致的质量。虽然低功耗技术的进步推动了
[单片机]
基于SHARC 2147x处理器的浮点<font color='red'>数字信号处理</font>
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved