基于光电传感和路径记忆的车辆导航系统

发布者:NatureLover最新更新时间:2007-03-29 来源: 电子产品世界关键字:噪声  驱动  导航  模块 手机看文章 扫描二维码
随时随地手机看文章

引言

      为响应教育部关于加强大学生创新意识、合作精神和创新能力的培养的号召,清华大学汽车工程系积极组队参加了第一届“飞思卡尔”杯全国大学生智能汽车邀请赛。从2005年12月开始着手进行准备,历时8个月,研制了6代基于光电传感器的路径识别方案,开发了智能车仿真研究平台,提出了基于路径记忆算法的转向及驱动控制策略,在电源管理、噪声抑制、驱动优化等方面也都进行了研究工作,通过大量的仿真试验、道路试验和基础性能测试,开发了基于光电传感和路径记忆的智能车导航系统,为整车系统的优良性能奠定了坚实基础。本文将从该智能车总体方案、路径识别方案选择、转向和驱动控制及路径记忆算法等方面进行介绍。

智能车总体方案

  智能车系统以飞思卡尔公司的MC68S912DP256为核心,由电源模块、传感器模块、直流电机驱动模块、转向电机控制模块、控制参数选择模块、单片机模块等组成,如图1所示。智能车系统工作电压由+1.6V、+5V、7.2V三个系统混合组成,其中7.2V用于给驱动电机和转向舵机供电,5V给车速传感器、MCU以及光电传感器接收管供电,1.6V给发光管供电。为了在线控制参数的调整方便,还设置了一个控制参数选择模块,可以通过几个按键的设置,调用不同的程序或控制参数,以适应不同场地条件的要求。

图1 智能车总体结构

  智能车的工作模式是:光电传感器探测赛道信息,转速传感器检测当前车速,电池电压监测电路检测电池电压,并将这些信息输入单片机进行处理。通过控制算法对赛车发出控制命令,通过转向舵机和驱动电机对赛车的运动轨迹和速度进行实时控制。

  想要取得智能车比赛的好成绩,模型车底盘参数优化和硬件设备的可靠性是非常重要的。其中,前轮定位参数优化、转向舵机力臂增大和底盘重心位置调整对于车模的机械性能有着较大的影响。底盘参数的优化参见[1],本文不赘述。

路径识别方案选择与电路设计

路径识别方案是首先需要确定的,主要有以下几个问题。
*光电识别还是摄像头识别;
*传感器如何排列?间隔多大、形状如何、单排还是双排;
*传感器可向前探测的远度;
*传感器信号采用数字式还是模拟式;
*电路上如何实现。

  由于光电识别方案简单可靠,因此本文采用了光电识别方案。

数字式光电识别与模拟式光电识别

  比赛组委会要求传感器个数最多为16个,除掉1个转速传感器,可用于探测路径的传感器为15个,而传感器允许布置的总宽度为25cm,如果采用数字式光电传感器均匀分布,对道路的探测精度只能达到17mm左右,这样赛车在前进过程中很难达到很高的控制精度和响应速度。从本质上讲,数字式光电传感器的劣势就在于它丢掉了路径探测中的大量信息。

  模拟式光电传感器从理论上可以大大提高路径探测精度。模拟式光电传感器的发光和接收都是锥角一定的圆锥形空间,其电压大小与传感器距离黑色路径标记线的水平距离有定量关系:离黑线越近,电压越低,离黑线越远,则电压越高(具体的对应关系与光电管型号以及离地高度有关),如图2所示。

图2 传感器电压与偏移距离关系示意图

  因此,只要掌握了传感器电压—偏移距离特性关系,就可以根据传感器电压大小确定各传感器与黑色标记线的距离(而不是仅仅粗略判断该传感器是否在线上),进而获得车身纵轴线相对路径标记线的位置,得到连续分布的路径信息。

  根据实车试验,可以将路径探测的精度提高到1mm。这样传感器采集的信息就能保证了单片机可以获得精确的赛道信息,从而为提高赛车的精确控制提供了保证。

双排排列与前瞻设计

  本文开发了智能车性能仿真平台[2],对传感器的布局进行了深入研究[3]。由于转向舵机、电机和车都是高阶惯性延迟环节,从输入到输出需要一定的时间,越早知道前方道路的信息,就越能减小从输入到输出的滞后。检测车前方一定距离的赛道就叫前瞻,在一定的前瞻范围内,前瞻越大的传感器方案,其极限速度就会越高,其高速行驶过程中对引导线的跟随精度也相对较高,系统的整体响应性能较好。因此路径识别模块设计成抬起与地面形成一个夹角,前排传感器用于前瞻,后排传感器对赛道始点进行识别、计算车身纵轴线与赛道中心线的偏差斜率,以利于更好地调整车辆的姿态。

  为了保证在离地间隙尽可能大的情况下光电传感器仍然有足够大的发光强度,本文采用了大电流脉冲触发发光的控制方式。

  [page]

      根据实验测试,发光管在发光时,经过的电流约为0.5A。如果用15个传感器,则瞬时电流为7.5A。这样大的电流肯定会对电池电压造成一定的冲击,不利于整个系统的正常运行。因此将前后排传感器的发光时间错开,通过两套触发电路来控制发光。这样就有效减小了红外发光管发光时对电池电压的冲击。

转向和驱动控制与路径记忆算法

驱动电机控制

  本文在电机输出轴上加一齿盘,电机输出轴的转动带动齿盘的转动。将对射光偶发光和接受管放在码盘两侧。码盘转动时,由于码盘上的齿经过发光管发出的光线时,会阻碍光线传播。所以接收管两端的电阻会有很大的变化,这样,在电路中采样电阻两端的电压就会有很大的变化。用处理器上的脉冲捕捉端口采集电压脉冲单位时间内的个数,就会获得电机转速,从而获得车速。

  电机驱动采用的是飞思卡尔公司的MC33886。所不同的是本文采用了三片MC33886 并联,一方面可以减小导通电阻,提高电机驱动能力,并且MC33886的发热情况也有了很大的好转;另一方面减小MC33886 内部的过流保护电路对电机启动及制动时的影响。

  电机采用PID闭环控制,可以根据不同负载状况及时调整PWM的占空比,使车辆迅速地跟踪目标速度。

  为了尽量提高车速,采用在直道上设定最高目标车速,定速控制,接近弯道处开始降速,正式转入弯道时,将车速调整到过弯极限车速,将要出弯道时提前加速。

转向控制

  根据目前采用的双排模拟式光电传感器布局,可以得到车身纵轴线距离赛道中心线的偏移量,还可以得到中心线相对于车身纵轴线的斜率,从而得知当前状态下车身的姿态,进而进行转向控制。

  这里设定根据前排传感器信号得到的转角为θ1,根据前后排传感器信号得到的纵轴线斜率信息而得到的转角为θ2,最终的转向角度的确定公式为:

  θ=k1θ1+k2θ2

  采用这样的控制策略,可以实现对车实际姿态的加权控制,大大提高过弯速度,减少由于探测精度问题带来的决策累积误差。另外,大前瞻与双排的双重组合,达到了对正常弯道提前转弯,对于S弯道迟滞转向的特性。

  为了使舵机更好地对给定的转角值做出响应,采用了PID调节,通过道路试验进行参数整定,使得车辆在高速时保持了很高的稳定性。

路径记忆算法

  由于比赛规则要求车辆在跑道上行驶两圈,因此车辆第一圈时通过记录转速传感器采集到的脉冲数、转向舵机的转角等信息,来判断区分直道、弯道、S弯道以及转弯的方向与转弯半径等等信息。根据第一圈记录的数据信息,可以对第二圈的各个道路点进行分段处理。直道上采用最高速加速,在进入弯道之前提前进行减速,减至过弯的极限最高车速,对于不同半径的弯道,选择不同的车速。路径记忆算法的优势在于对于复杂的S弯道,可以实现类似CCD探测头达到的效果,选用小的转向角度通过,这样可以大大缩短时间。具体算法请见[4]。

经验及结论

  本文的智能车开发工作经过6轮开发迭代,从最初的小前瞻单排数字式传感器,发展成脉冲发光、大前瞻、双排排列、模拟式传感器方案;控制策略从单纯的PID控制升级到路径记忆控制,使得车辆的导航性能有了很大提高。通过智能车开发过程,得出一些经验。

  *开发之初需要对光电传感器特性、转向舵机特性、驱动电机特性、车辆机械性能、转向侧滑特性、电池特性等进行实际的检测。

  *根据汽车理论对车辆进行规则容许范围之内的结构调整,使之达到较佳的机械性能。

  *组委会开发了仿真平台,应该充分利用该仿真工具对基于光电传感器的路径识别方案进行研究,结合硬件的选型和自身在控制及电子方面的经验,确定路径识别方案。前瞻距离较远的方案有助于提高车辆的通过速度。

  *车辆的控制采用PID即可满足要求,参数的整定需要结合道路试验进行。车速的加快和减慢不要太剧烈,平稳的控制也可以取得很好的效果。过大的加速度会导致电机和驱动芯片的过热以致驱动性能下降。

  本文介绍了第一届大学生智能车比赛冠军车的总体方案、路径识别方案选择、转向和驱动控制及路径记忆算法等内容。由于采用大前瞻光电传感器,需要较大的电流,使得电池电能的消耗较大,跑道距离较长时,车辆电池电量下降较快,使得车辆竞速性能下降。路径记忆算法的模糊寻迹算法也有待改进。而摄像头路径识别方案既可以实现大的前瞻,电能消耗又较低,这些是今后努力的方向。

参考文献
1. 陈宋、李立国、黄开胜,‘智能模型车底盘浅析’,电子产品世界, 2006(11):150-153
2. 周斌、蒋荻南、黄开胜,‘基于虚拟仪器技术的智能车仿真系统’,电子产品世界, 2006(3) :132-134
3. 周斌、李立国、黄开胜,‘智能车光电传感器布局对路径识别的影响研究’,电子产品世界, 2006(9):139-140
4.周斌、刘旺、林辛凡等,‘智能车赛道记忆算法的研究’,电子产品世界, 2006(15):160-166
5. 黄开胜、金华民、蒋荻南,‘韩国智能模型车技术方案分析’,电子产品世界, 2006(5):150-152

关键字:噪声  驱动  导航  模块 引用地址:基于光电传感和路径记忆的车辆导航系统

上一篇:基于GPS定位的嵌入式汽车监控器设计
下一篇:CAN总线下的燃料电池汽车空调控制节点

推荐阅读最新更新时间:2024-12-18 18:47

MPC5744P-SPI模块(串行外设接口模块)
1.结构 5744的SPI模块支持全双工三线同步传输,可运行在主机或从机模式,分别含有深度为5的FIFO发送和接收缓存区。其结构如下图。SPI配置允许模块发送和接收串行数据,同时也支持带FIFO缓存区的的进行扩展队列操作的数据传输。模块接收和发送的数据存放在独立的FIFO内,CPU或DMA控制器从接收FIFO读取数据,写入数据到Tx FIFO内进行发送。 2、传输过程 1)发送过程 发送数据时CPU先查询寄存器SR内TFFF的状态,若TFFF为为0则表明TX FIFO已满,继续写入无效;当TFFF为1则表明TX FIFO未满,可以继续写入。CPU通过写数据到寄存器PUSHR将要发送的数据添加到TX FIFO内,TX FIF
[单片机]
MPC5744P-SPI<font color='red'>模块</font>(串行外设接口<font color='red'>模块</font>)
LED景观照明灯驱动电路设计方案
  在国内外倡导绿色环保及节能的背景下,伴随着近年来LED光效、寿命及光色上的明显进步,半导体发光二极管(LED)因具有节能、寿命长、驱动简单、灯色种类多等优点已广泛应用于景观照明、数字化交通信息显示、疏导标识、室外全彩显示屏及照度要求不高的室内外照明等领域。   针对LED在城市亮化中的应用现状,笔者利用电力电子整流与恒流技术设计制作了一款LED景观照明灯,它具有成本低、工作可靠、寿命长、控制简单等特点,并可根据实际需求进行功能扩展。    1 小功率LED驱动方案   目前小功率LED产品广泛采用两种驱动电路形式,即恒流驱动和稳压驱动。前者电路输出的电流是恒定的,输出电压随负载的变化而变化;后者输出电压是固定的,
[电源管理]
LED景观照明灯<font color='red'>驱动</font>电路设计方案
基于GSM网络的智能监控模块设计
摘要:利用GSM网络作为无线智能监控模块的信息传输平台是一种很有效的方法。其原理简单,安全保密性高,又不需要组建专用网络和维护网络,加上GSM网络覆盖面广,可实现全球无缝覆盖,与传统的监控系统相比有着独特的优势。给出相应的硬件结构原理和软件工作流程。整个智能模块主要由89C52型微控制器、外围电路和TC35型无线模块构成,可广泛用于智能家居防盗、远程监控、无人值守设备的维护及现代自动化生产线的监控等领域。 关键词:智能监控;TC35; GSM; 单片机;89C52 引言 随着计算机与通信技术的高速发展,新技术和智能设备层出不穷,使得无线方式智能监控的实现成为可能。笔者设计了一种运用GSM(全球移动通信系统)网络短消息进行通
[应用]
低功耗、温度补偿式电桥信号调理器和驱动器电路
带温度补偿的差分电桥型传感器监控电路是一款适用于电桥型传感器的完整低功耗信号调理器,包括一个温度补偿通道。该电路非常适合驱动电压介于5V和15V之间的各类工业压力传感器和称重传感器。 功能与优势 图1所示电路是一款适用于电桥型传感器的完整低功耗信号调理器,包括一个温度补偿通道。该电路非常适合驱动电压介于5V和15V之间的各类工业压力传感器和称重传感器。 利用24位Σ-Δ型ADC的内置可编程增益放大器(PGA),该电路可以处理大约10mV到1V的满量程信号,因此它适用于种类广泛的压力传感器。 整个电路仅使用三个IC,功耗仅1mA(不包括电桥电流)。比率式技术确保系统的精度和稳定性不依赖于基准电压源。 图1.带温度补偿的
[嵌入式]
低功耗、温度补偿式电桥信号调理器和<font color='red'>驱动</font>器电路
德州仪器 (TI) 光学模块10G SFP+整体解决方案
TI 10G光学模块SFP+整体解决方案是一套完整的解调演示工作光学收发器解决方案,主要应用于小型插头(SFP+)。 这种解决方案缩短了客户设计时间,从而节省客户成本,并且没有牺牲性能。通过把TI的激光驱动器ONET1101、限幅放大器ONET8501和强大的MCU MSP430组合到一个SFP+多源协议标准包中,实现上述目标。另外,文章将为您展示令人信服的设计文档和测试结果。 本应用说明为您介绍原理图、PC板布局、Gerber文件、材料清单(BOM)、固件以及图形化用户界面(GUI);不仅仅为了实现模块化,同时也用于评估板。本解决方案还介绍了组装电路板的测试装置、测试数据和典型性能。 1、 引言 增强型小型
[网络通信]
德州仪器 (TI) 光学<font color='red'>模块</font>10G SFP+整体解决方案
基于Google Map Api的Android导航应用
  一、引言   在当今社会,手机已经成为人们日常生活中不可或缺的工具,以用户体验为核心诉求的智能手机,使手机由单一的 通信 终端发展成为互联网终端。越来越多的互联网应用被移植到智能手机中来,导航软件在智能手机中的应用成为了研究热点之一。在目前大部分智能手机都提供 GPS 定位服务以及 3G 无线 网络 越来越普及的双重 驱动 下,在Google 地图中实现导航服务,是具有可行性的。   本文提出并实现了一种基于Google Map Api 的 Android 导航应用,能够给用户提供人性化和智能化的地图导航服务。   二、系统体系结构      图1 系统体系结构    三、UI 界面设计   An
[电源管理]
基于Google Map Api的Android<font color='red'>导航</font>应用
手机中白光LED驱动电路方案
  手机中白光LED驱动电路经常使用两种架构:LED以串联方式连接的电感升压转换电路和每个LED都通过稳定的电流源驱动的电荷泵驱动器。电感解决方案可以带来最佳的整体效率,而电荷泵方式由于使用小型陶瓷电容作为能量转换器件,因此体积最小。图1和图2分别给出了两种驱动架构的典型应用电路。当前,功率LED的效率不断地提高,降低了背光LED的功耗,因此可以用更少的LED提供更高的光输出。这意味着两三年前需要4个LED给1.5in(1in=25.4mm)屏幕提供背光,现在只需两个功耗只有1/2的LED就能够得到相同的性能。   图1 基于NCPSOO5的电感式LED驱动电路   图2 基于NCP5*A的电荷泵LED驱动电路
[电源管理]
手机中白光LED<font color='red'>驱动</font>电路方案
LED灯驱动电源实战经验
近年来LED灯封装技术和散热技术的不断发展,LED灯的稳定性已经达到比较好的水平,发生光衰和色漂移的主要是些山寨厂家的产品,主要原因是散热设计的不合理。相对来说LED灯驱动电源的问题要严重的多,是导致死灯或者闪烁的主要原因,也就是说,LED灯驱动电源已经成为LED灯质量的短板,根据木桶理论,LED灯驱动电源的寿命就是LED灯的寿命。   常规照明路灯是灯头与电源分开的,通常发生故障的是灯头--高压钠灯,高压钠灯国家标准规定质保期一年,路灯管理单位都会存库一定数量的钠灯,高压钠灯具有成熟的国家标准,其主要配件尺寸、功率等主要参数都是统一的,具备互换性。   而当前LED灯的故障主要在电源,所以主要就是要解决电源问题。由于目前LE
[电源管理]
小广播
最新汽车电子文章

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved