详解LY结构,一种改变当前能源结构的混动车结构原理

发布者:智慧启迪最新更新时间:2019-05-14 来源: 盖世大V说关键字:电动车  结构  lightyear 手机看文章 扫描二维码
随时随地手机看文章

目前,电动车是发展趋势,混动车不被看好。混动车结构目前有三种:分别是串联式、并联式以及混联式,其中增程式混合动力只能是串联式结构,而并联式和混联式结构既可以应用于普通混合动力,也可以应用于插电式混合动力。详见附文一


本文介绍一种全新的电动车结构,该结构能解决当前大部分电动车的里程焦虑,充电难,还有电网冲击等等问题。如果本文构想能够实现,10年内石油等化石能源将退出人类能源舞台。汽车也会更廉价。此种电动车结构未曾有过报道,此文为原创。供所有人使用。


暂时将这种电动车结构称为lightyear结构(光年结构,简称LY结构)


1.1 lightyear混动车原理


未来,lightyear混动车(以下简称LY混动车)因其突出的性能、更环保的动力源。LY电动会完全取代燃油车,LY结构成为主要的电动车结构方式。


1.1.1 单电机LY混动车原理介绍


一种改变当前能源结构的混动车结构原理

图1 单电机LY 混动车


如图1所示、LY单电机结构,是一个发动机兼发电机驱动的纯电动车。电动机为一个130KW的电动机,兼发电功率为130KW。电动机在车辆行驶时提供加速推力、前进后退动力。在车停下来的时候,由外力带动发电机逆向充电。也可以由充电口(快充40KW)进行快慢速充电。电机发电和充电口充电,可以是二选一或者两者同时充电。最大充电功率为130+40=170KW。这种结构带来的好处是能够在8分钟内充电达到80%(电池容量为25KWH)。


1.1.2 双电机LY混动车


一种改变当前能源结构的混动车结构原理

图2 双电机LY 混动车


如图2所示、LY双电机结构,就是一个双电机驱动的纯电动车的增强版。


电动机A为一个55KW的电动机兼发电机,发电功率为20~55KW。电动机A在正转时提供加速推力,由外力带动反转是作为发电机使用。通过一个简单的传动耦合结构即可实现。


电动机B是一个75KW的主驱动电动机,带动后轮转动。电动机B可满足单个电机运行时,最高车速为100KM/H。


当汽车停下来时,通过机械传动系统给电动机A提供动力发电。最高发电功率为55KW,约半小时充满电25KWH电池,也可以通过充电口将电能回馈到电网,实现逆向充电。


在没有外置动力的情况下,通过55KW充电口快充或者慢充。或者二者同时充电。最大充电功率为110KW.10分钟充电到80%。


LY混动车可在前机舱放置一个燃油燃气发动机,为发动机A提供动力,发电功率为20KW~55KW。作为增程器。当汽车需要加速、爬坡等大动力时。增程器停止工作。电动机A为汽车提供推力。增程器发动机和燃料由加油充电站提供。电动机A的变频控制系统是带逆变功率的变频器。发电后电能存储到电池,或者直接给电动机B提供电能。


假定该车型电池续航里程为160KM,车重1.2吨、百公里耗电13KWH,电池组定为26 KWH。在自带燃油发动机增程和40L燃油情况下,160KM里程电量用尽耗时 2小时。发电机发电40KWH。增程模式下,百公里油耗折算8L,总里程续航里程超过660KM。这样解决了里程焦虑问题。


LY混动货车


货车因其载荷大,耗电高。充电难问题尤为突出,LY混动货车,每个轮子采用单独电机驱动。每个电机都具备电动机和发电机功能。并具有一个或多个增程发动机。这种结构的好处是能够在短时间内快速实现能源存储和使用。


LY混动车定义


综上,LY混动车可以为多电机驱动、多电机兼发动机的任意组合方式。不同车身结构、车辆用途、及驱动传动方式的电动车均可以由机械传动逆向发电。该类结构称为LY结构。LY结构混动车的特点是能够快速实现能量的变换、存储和使用。作者梁云最大限度降低车体重量,各个车体构成部件能有在行驶、加速、减速、充放电的时候充分、重复利用。LY混动车主要以环保的能源为动力源。


Lightyear结构非常简单,其实就是一个双电机驱动的纯电动车的增强版。


电动机A为一个55KW的电动机兼发电机,发电功率为5~37KW。电动机A在正转时提供加速推力,由外力带动反转是作为发电机使用。通过一个简单的飞轮结构即可实现。


电动机B是一个75KW的主驱动电动机,带动后轮转动。电动机B可满足单个电机运行时,最高车速为100KM/H。


lightyear结构在没有燃油发动机时,当汽车停下来时,通过机械传动系统给电动机A提供动力,带动电动机A发电。最高发电功率为37KW,快充约一小时充满电,发电的同时也可以通过充电口将电能回馈到电网,实现逆向充电。在没有外置动力的情况下,也可以通过充电口快充或者慢充。跟普通电动车没有差别。


lightyear结构也在前机舱放置一个燃油发动机,为发动机A提供动力,发电功率为20KW~5KW。作为增程器使用。当汽车需要加速、爬坡等大动力时。增程器停止工作。电动机A为汽车提供推力。增程器可以做成5KW、10KW、15KW、20KW四种规格。增程器发动机由加油站提供。根据行驶距离来确定选用哪一种功率规格。电动机A的变频控制系统是带逆变功率的变频器。发电后电能存储到电池。或者直接给电动机B提供电能。


假定该车型电池续航里程为200KM,百公里耗电14度,电池组定为35度。在自带燃油发动机增程情况下,200KM里程电量用尽耗时 3小时。发电机发电20*3=60度。总里程续航里程超过600KM。这样能解决了里程焦虑问题。


假定中国汽车保有量2亿辆(含乘用和商用)全部换成lightyear结构电动车,每台车的发电功率平均为37KW。则有2亿x37KW=74亿KW,目前中国的发电装机总容量不超25亿KW。相当于中国的发电装机容量增加了3倍。


当然有了发电机,没有动力源仍然是没有用处的。大自然给予了人类无私的馈赠,生物质能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。生物质的利用率不到3%。中国禽畜粪便约20亿吨,秸秆8亿吨,农业林业废弃物总量远超百亿吨。假定每辆汽车耗电量为50度每天。1吨(干有机质含量15%)餐厨垃圾产沼气产生80——120立方米的沼气(甲烷浓度为60-65),每1立方米沼气发电约2度。也就是说1吨(干有机质含量15%)一天约可以为4电动车提供电能,假定全国十分之一的汽车用沼气发电,0.2亿/4=0.05亿吨。每天需要有机质为500万吨,每年约需要18.25亿吨。


假设,车主甲,生活在农村,每天有1吨的生物质可以投入沼气池。沼气池及20KW沼气发动机投入成本在10万,并有一辆lightyear结构的电动车(购买价格12万)。总投入在22万内。


车主甲,白天开车,晚上lightyear结构的汽车用来发电,发电时长12小时,产生电能240度。其中50度自用。190度用于发电上网,上网电价为0.69元。每天收入约130元。年收入4.745万。预计5年收回所有成本。预计系统设计寿命10年。


如果将生物质利用规模扩大到湿重200亿吨,所有电动车的能源来自生物质。石油等化石能源市场不复存在。而产生的沼渣、沼液也足够农业生产所需的肥料,再也不需要化学肥料厂。但生物质分散,能量密度不高,开发起来需要算经济账。


当然除了沼气,还可以利用天然气、水煤气。一台5KW天然气发动机,每天用于发电,每立方天然是2~3元,发电量是3.5~5度,并能产生数吨热水供取暖。一天发电12小时电能60度,需要天然气约15立方米,费用在30~45元。比当前燃油费用节省50%,并解决取暖和热水使用问题。以后煤变油的工程也不需要了,甚至不需要燃煤电厂,煤炭运到一个气站,变成水煤气,然后采用内燃燃气发动机驱动电动车发电。目前存在的问题是能量转换效率有待提高。


采用天然气和水煤气发电的目的是,能源结构调整。以后太阳能普及之后白天使用太阳能,夜晚使用电动车发电,由于电动车发电的巨大发电装机容量。如果全部利用起来能使全中国的电能增加三倍以上。


综上、lightyear结构电动车,能够在当前技术水平下实现长续航,低于传统燃油车的单车生产成本,使用成本也远低于燃油车。生物质能源完全取代化石燃料是理论上可行的。因生物质能源分布广,密度低,只能小规模利用。比如城市里的厨余垃圾、粪便,农村的农业废弃物,以及园林绿化废弃物,禽畜养殖废弃物。还可能会发展新种植业,用种植出来的有机质厌氧发酵发电。


当前,人类正在处于能源革命中。即能源的获取方式多样化,可持续化,如太阳能和核能利用。还有能源的存储和使用高效化,经济化。以外太空电源规模化利用为成熟标志。人类活动的所有努力都是为了走得更远。


个人认为,本文所构建的一种能源结构形态很有可能成为现实。这个实现过程是数十年内,几十万、几百万人不懈努力的。就本文而言,并没有什么独创的技术或者采用什么新的材料,而是通过整合不同的资源优缺点,和当前各种商品的难点。提出的一种解决方案,就如武侠小说里的高手,打通任督二脉后,功力倍增。


写这篇文件的目的是广为传播这个lightyear混动电动车结构,和构建未来能源结构。号召几百万人来不断提高效率,降低成本。最终实现能源革命的目标。


当下能源结构调整的同时,社会也会发生很大的变革。比如石油巨头,两桶油,中东富国将不复存在。汽车制造厂家会洗牌。谁动得快,抢占市场,谁就能成为这次变革的胜利者。


关键字:电动车  结构  lightyear 引用地址:详解LY结构,一种改变当前能源结构的混动车结构原理

上一篇:博世新燃料电池铂含量将比现有燃料电池低90%
下一篇:宁德时代朋友圈再添一员,与沃尔沃合作签亿元订单

推荐阅读最新更新时间:2024-11-10 10:51

英国政府拨付4200万英镑 用于电动车电池技术研发项目
据外媒报道,英国政府划拨了4200万英镑(约合5925万美元)的资金,用于四款不同的储能研发项目,各个项目均由学术机构(academic institution)主导,帮助电动车行业解决其面对的电池难题。 麦肯锡咨询公司(McKinsey & Company)最近一份有关的电动车设计的报告。据该报道称,目前尚无法确定哪类技术最适用于电动车,从而实现电动车行业的产业变革。为在英国全面推广电动车,电池技术成为不可或缺的重要组成部分。在不久的将来,还需要进行大量的研发测试,才能实现在英国全面配置电动车这一宏伟目标。 该笔政府资金将通过拉第研究所(Faraday Institution)进行调配,英政府为电池技术总计投入了2.46亿英镑
[汽车电子]
学习笔记 从零开始学单片机(0) 系统结构
最近想研究研究嵌入式系统,由于虽然是计算机专业的,但是硬件知识很差,再加上毕业若干年,全部忘光光。可以说,一切几乎是从零开始了。我还是从简单点的单片机开始学习,看了一眼,感觉比较容易些,从浅入深的学习吧。原来学东西好囫囵吞枣,学了一大堆几乎都是些皮毛,我这次写这个日志,一个是把它当做我的学习笔记,另外也是敦促我自己踏踏实实的学习。 言归正传,去年在二手市场上花了¥2.00(也够抠门的了)买来了一本《单片微型机 原理、应用与实验》,复旦大学出版社的(我就是由买书的爱好,有没有用看到就想买),就拿它当做我的课本了吧。单片机这个东西,要理论联系实际,没有实验啥都是白学!于是跑到淘宝上花了3百多RMB买来开发板一套,附赠视
[单片机]
学习笔记 从零开始学单片机(0) 系统<font color='red'>结构</font>
51单片机引脚功能图解 51单片机内部结构及功能
01 前言 51单片机是最早最基础也是目前应用很广泛的一款8位单片机,在大学阶段,它是电子信息及自动化类相关专业的学生必学的一门课程。它是一种通用型的微控制器,英文中我们通常将微控制器统称为MCU。51单片机典型产品有Intel公司的MCS-51系列(如8051/8052、8031/8032、8751/8752等)和Atmel公司的89C51、89C52、89C2051等系列。 目前在国内以上这些单片机除了在学校实验室,市场上已经很难见得到了,一方面由于国外厂家停产了,比如Intel很早就不产8位芯片了,对于他们来说这点利润还不如做电脑CPU的零头;另外的原因是应为国产替代,进口芯片在国内市场完全没有价格优势了。其中国产51单
[单片机]
51单片机引脚功能图解 51单片机内部<font color='red'>结构</font>及功能
前两季度一汽红旗销量增长111%,雷诺电动车增长38%
一、智能化与自动驾驶动态 1.1,福特牵手 Mobileye,2021 年将大规模应用 7 月 21 日,英特尔宣布其无人驾驶车辆研发部门 Mobileye 与福特汽车达成协议。这是福特第一次尝试大规模在下一代汽车和卡车上使用 Mobileye 技术,包括福特 Bronco,全电动 Mustang Mach-E 和下一代 F-150 皮卡等车型。(来源:未来汽车日报) 1.2,投资者问:请问华域汽车目前在自动驾驶领域有没有布局? 华域汽车答复:公司电子分公司 24GHz 后向毫米波雷达实现对上汽乘用车、上汽大通等客户的稳定供货,应用于大巴的具有自动紧急刹车功能的 77GHz 前向毫米波雷达已顺利通过国家法规测试,成为首款通
[嵌入式]
前两季度一汽红旗销量增长111%,雷诺<font color='red'>电动车</font>增长38%
高精度库伦效率测试系统的特点功能和结构分析
一、库伦效率定义: 库伦效率(coulombic efficiency),也叫放电效率,是指电池放电容量与同循环过程中充电容量之比,即放电容量与充电容量之百分比。 二、测试意义: 电池无法完全消除老化,但更长的电池寿命意味着更缓慢的电池衰减,电动车用户可以降低更换电池的频率,使电动车的使用成本大幅度降低。但传统方法评估电池寿命,需要高达上千次的重复充放电,以及长达几个月的漫长等待时间。 为在每一次电池充放电过程中,都会有一部分锂离子的损耗,因此电池容量会随着充放电过程逐渐减小,也就是我们经常说到的电池老化。经过若干次充放电后,电池的coulombic efficiency值趋近于一个常数。这个数值越接近1,说明电池在充放电过程
[测试测量]
高精度库伦效率测试系统的特点功能和<font color='red'>结构</font>分析
机械增加与涡轮增压的结构特点与工作原理
随着现代科学技术的发展,很多零部件在汽车上得到了更广泛的应用,汽车的科技感也变得越来越强。技术不断革新,新技术层出不穷,使得汽车发动机的动力日渐增强。增压技术便是其中之一,为汽车发动机提高动力起到关键的作用。增压技术目前在汽车领域内分两种:一种是涡轮增压;另一种是机械增压。但是我们常见的车型上往往使用的都是涡轮增压,这又是为何呢? 第一、机械增加与涡轮增压的结构特点与工作原理 现如今汽车发动机的排量从0.8L到5.0L甚至更大,在这些排量的发动机上都可以看到增压装置,但是在很多的发动机上只有涡轮增压,也有一部分发动机上是两者并存的,我们先来说说机械增压的结构特点和工作原理。 1.机械增压 机械增压是利用发动机自身的动力来驱
[嵌入式]
机械增加与涡轮增压的<font color='red'>结构</font>特点与工作原理
电动汽车电池保护结构混合解决方案将在2018年欧洲BEVA会议上提出
  在即将于12月5日至6日在伦敦举行的2018年欧洲电动汽车架构大会上,汉高(Henkel)和RLE国际(RLE International)将提出一种保护下一代电动汽车电池单元的新方法。面对电动汽车电池保护面临的挑战,汉高和RLE国际已经调查和验证了混合结构解决方案与传统设计对电动汽车电池保护的作用。本研究包括在标准汽车侧、前、后碰撞场景中对优化后的面板等部件的全仿真。同时,它揭示了一个重要的轻量化潜力,以补偿电动汽车电池部分所增加的重量。   汉高将在BEVA的一个介绍会引入这个概念,题目为“轻量级架构概念的电池保护系统”,由德国汉高全球汽车工程主管大卫•卡罗与RLE工程主管大卫•欧文一起,会议安排在
[新能源]
【GD32 MCU入门教程】GD32 MCU GPIO 结构与使用注意事项
1.前言 本文是专门为基于GD32 MCU开发的工程设计人员提供,主要介绍了GPIO的功能配置、内部结构以及在不同场景使用时的注意事项,旨在帮助GD32 MCU开发者优化对通用型输入输出端口(GPIO)的使用,正确快速的使用GD32 MCU进行产品开发。 GPIO,通用型输入输出端口的简称,可以通过软件配置其输出或者输入,GD32 的 GPIO 引脚与外部设备连接,从而实现与外部通信,控制以及信号输入的功能,是 GD32 MCU 中很常见,使用最广泛的模块。 每个 GPIO 引脚可以由软件配置为输出(推挽或开漏)、输入、外设备用功能或者模拟模式。 每个 GPIO 引脚都可以配置为上拉、下拉或浮空模式或无上拉/下拉。 GD32
[单片机]
【GD32 MCU入门教程】GD32 MCU GPIO <font color='red'>结构</font>与使用注意事项
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved