据外媒报道,美国斯坦福大学和SLAC国家加速器实验室的研究人员发表在《焦耳》杂志上的一项研究指出,他们发明了一种新的涂层,可以使轻量金属锂电池安全持久,这将引领下一代电动汽车的诞生。
在实验室测试中,涂层显著延长了电池的寿命,它还通过极大地限制穿透电池正负极之间隔板的析锂来处理燃烧问题。
研究人员指出,金属锂电池每磅的能量至少比锂离子电池多三分之一,而且非常轻,因为它们使用轻量锂作为带正电荷的一端,而不是更重的石墨。如果金属锂电池更可靠,从笔记本电脑到手机,这些便携式电子产品都能从中受益,但真正的收入来源将是汽车。电动汽车最大的阻力是电池就占据了成本的四分之一,这触及电动汽车生产成本的核心问题。
传统锂离子电池的容量已经发展到了极限,因此,开发新型电池以满足现代电子设备的高能量密度要求至关重要。
斯坦福大学和SLAC的研究小组在一个标准金属锂电池的正电荷端(称为阳极)上测试了它们的涂层,正电荷端通常形成析锂。最终,他们将特殊涂层的阳极与其他市场上可买到的组件结合起来,创造出一种完全可运行的电池。经过160次循环使用后,他们的金属锂电池仍能提供第一次循环时85%的电能。普通的金属锂电池在如此多次循环后会大概只能释放约30%的能量,即使它们不会爆炸,作用也不大了。
这种新的涂层通过形成一个分子网络来阻止析锂的形成,这个网络可以将带电的锂离子均匀地输送到电极上。它可以防止这些电池发生不必要的化学反应,还可以减少阳极上的化学物质积聚以避免它们破坏电池的供电能力。
研究小组目前正在改进其涂层设计,以便在更多周期内测试电池及提高容量保持率。
固态复合物电极
顶级学术期刊《Matter》8月刊登中国科学技术大学的马骋教授和他的合作者最新成果。该成果提出一种新策略,可以有效解决下一代固态锂电池中电极材料和固态电解质接触差这一关键问题,合成出的固态复合物电极展现出优异的容量和倍率性能。
当前主流锂电池使用液态电解质,存在起火等安全隐患,且特定体积内能够储存的能量有限,但能解决这些问题的下一代固态锂电池仍存在很多尚未攻克的难题。用固态电解质替换传统锂离子电池中的有机液态电解质可以极大缓解安全问题,且有望突破能量密度的“玻璃天花板”。然而,主流电极材料也是固态物质,由于两种固态物质之间的接触几乎不可能像固-液接触那样充分,目前使用固态电解质的电池难以实现良好的电极-电解质接触,电池整体性能也并不令人满意。
马骋团队及其合作者通过对一种经典钙钛矿结构的固态电解质中的杂质相进行原子级观测,虽然杂质和固态电解质结构迥异,研究者却观察到他们的原子在界面处能以相互外延的形式排布。经过一系列细致的结构和化学分析,研究者发现这一杂质相和高容量的富锂层状物电极结构相同。
利用观察结果,研究者将成分和钙钛矿固态电解质相同的非晶粉末在富锂层状物颗粒的表面做成结晶,成功地在新复合物电极中实现两种固态材料间充分、紧密的接触。解决了电极-电解质接触问题,这种固-固复合物电极的倍率性能可以和固-液复合物电极相媲美。更重要的是,研究者还发现这种外延的固-固接触可以容忍很大的晶格错配,因此他们提出的策略可适用于多种钙钛矿固态电解质和层状电极。
关键字:固态复合物电极 锂电池
引用地址:
研究人员发明新涂层与固态复合物电极,提高锂电池的容量与安全
推荐阅读最新更新时间:2024-10-26 17:02
研究人员发明新涂层与固态复合物电极,提高锂电池的容量与安全
据外媒报道,美国斯坦福大学和SLAC国家加速器实验室的研究人员发表在《焦耳》杂志上的一项研究指出,他们发明了一种新的涂层,可以使轻量金属 锂电池 安全持久,这将引领下一代 电动汽车 的诞生。 在实验室测试中,涂层显著延长了电池的寿命,它还通过极大地限制穿透电池正负极之间隔板的析锂来处理燃烧问题。 研究人员指出,金属 锂电 池每磅的能量至少比 锂离子电池 多三分之一,而且非常轻,因为它们使用轻量锂作为带正电荷的一端,而不是更重的石墨。如果金属锂电池更可靠,从笔记本电脑到手机,这些便携式电子产品都能从中受益,但真正的收入来源将是汽车。电动汽车最大的阻力是电池就占据了成本的四分之一,这触及电动汽车生产成本的核心问题。 传统锂
[汽车电子]
麻省理工学院开发稳定电解质和电极界面的新方法 提高固态锂电池寿命
固态电池采用锂金属等固态电极和固态电解质,通常能量密度较高,可以避免起火风险。但是,固态电解质和两侧电极之间的界面具有不稳定性,大大影响了此类电池的寿命。有些研究尝试通过特殊涂层,改善层体之间的键合,却增加了制造费用。 (图片来源:麻省理工学院) 据外媒报道,麻省理工学院(MIT)和布鲁克海文国家实验室(Brookhaven National Laboratory)的研究人员提出一种方法,可以在不使用任何涂层的情况下,实现同等或更好的耐久性。 这种新方法只需在关键制造步骤(名为烧结)中去除所有的二氧化碳(CO2)。在烧结过程中,需要加热电池材料,以使正极和电解质层(由陶瓷化合物制成)之间形成键合。空气中的CO2含量微
[汽车电子]
研究团队开发半固态电极 防止下一代锂电池短路
为了突破电池设计界限,在既定空间或重量中容纳越来越多的电力和能量,研究人员正在探讨一项更有前途的技术,在锂离子电池的两个电极之间采用固态电解质材料,而不是电解液。 (图片来源:MIT) 然而,这类电池一直存在一个问题,即其中一个电极上会形成金属枝晶,最终连接电解质,使电池短路。据外媒报道,麻省理工学院(MIT)等院校的研究人员现已找到一种防止枝晶形成的方法,有望提升这种新型高功率电池的潜力。 麻省理工学院参与此项研究的人员包括研究生Richard Park、教授Yet-Ming Chiang和 Craig Carter等人,其余研究人员分别来自德克萨斯农工大学(Texas A&M University)、布朗大学(B
[汽车电子]
4680、固态电池的理想工艺,干法电极产业化“加速”
2020年,4680全极耳大圆柱的出现,将干法电极技术带入大众的视野。作为4680大圆柱电池核心潜力技术之一,干法电极与全极耳、高镍高硅和CTC集成技术并列为46系列四大革新技术。干法电极在降低电池成本,提升电池性能上有着湿法工艺无可比拟的优势,被认为是半固态、全固态和46系列大圆柱电池的理想工艺。 近日,纳科诺尔联合清研电子在CIBF上推出干法电极成型覆合一体机,实现电极膜成型以及电极膜与集流体复合的一体化,将干法电极技术从“理想照进现实”,率先开启干法电极产业化进程。 基于对锂电装备制造降本、提升一致性、可靠性和效率的设计理念,干法电极成型覆合一体机在多个维度实现了创新。 以纳科诺尔为代表的中国锂电装备企业
[汽车电子]
LiCAP发布近量产级固态电极生产技术
日前海外媒体报道称,LiCAP Technologies(力容新能源技术)扩展与其专有活性干电极(Activated Dry Electrode)相关的技术组合,开辟了一条具有成本效益、可持续发展的途径,以实现固态电池的商业化。 比起传统锂离子电池(LIB),固态电池(SSB)具有更高的安全性、比能和能量密度前景。然而,制造LIB电极采用的传统湿法涂覆方法,无法与湿敏性固态电解质材料的室温干燥加工工艺互相兼容。 LiCAP成功地将Activated Dry Electrode技术应用于SSB电极制造过程中,并首次生产了正极电解质(catholyte)样品。自2022年2月试验以来,LiCAP开发了若干采用NMC和硫基电解
[汽车电子]
LiCAP扩展活性干电极技术 可以60m/min的速度生产固态电池电极
据外媒报道,LiCAP Technologies扩展与其专有活性干电极(Activated Dry ElectrodeTM)相关的技术组合,开辟了一条具有成本效益、可持续发展的途径,以实现固态电池的商业化。 (图片来源:LiCAP) 比起传统锂离子电池(LIB),固态电池(SSB)具有更高的安全性、比能和能量密度前景。然而,制造LIB电极采用的传统湿法涂覆方法,无法与湿敏性固态电解质材料的室温干燥加工工艺互相兼容。 LiCAP成功地将Activated Dry ElectrodeTM技术应用于SSB电极制造过程中,并首次生产了正极电解质(catholyte)样品。自2022年2月试验以来,LiCAP开发了若干采用NM
[汽车电子]
研究发现新型电极材料 可提高固态电池性能
据外媒报道,最近,日本某研究小组通过结合硫酸锂和钌酸锂开发出一种新型电极材料,可提高全固态电池(ASSB)性能。锂离子电池想要实现大规模应用,需要具备高安全性和高能量密度,采用无机固体电解质的全固态锂电池也不例外。利用高容量锂过量电极材料可进一步提高能量密度。但是,该方法从未应用于全固态电池。 全固态电池采用高容量锂过量电极材料的难点在于其电极-电解质界面构造。研究人员通过使用Li2SO4将锂过量模型材料Li2RuO3非晶化,首次证明全固态电池中存在可逆氧氧化还原反应。Li2RuO3 -Li2SO4基体的非晶态性质使得其能够包含具有高导电性和延展性的活性材料,从而可提供具有电荷转移能力的良好界面,实现全固态电池稳定运行。
[汽车电子]
研究人员开发新型电极结构 可用于全固态二次电池
据外媒报道,韩国研究人员开发了一种可用于全固态二次电池的新型电极结构。如果这项技术得到采用,与现有技术相比,电池的能量密度将显著提高,极大促进高性能二次电池的发展。 (图片来源:etri) 联合研究小组的成员分别来自韩国电子通信研究院(ETRI)和大邱庆北科学技术院(DGIST)。他们发现锂离子在活性物质之间容易扩散的机理,并针对全固态二次电池设计了一种新型电极结构。 与只能使用一次的原电池不同,二次电池可以充电并重复使用。对于机器人、 电动汽车 、储能系统(ESS)和无人机等应用来说,二次电池技术的重要性正在逐渐提升。全固态二次电池通过固体电解质在电池电极内传输离子,与液态电解液相比,固体电解质更加安全,不易引发
[汽车电子]