据外媒报道,美国约翰·霍普金斯大学应用物理实验室(Johns Hopkins Applied Physics Laboratory)的一组研究人员设计了一种柔性锂离子电池,即使在被切割、被浸没、被模拟弹道撞击等极端条件下,该电池都可正常工作,而且现在,该电池还不会着火。
(图片来源:约翰·霍普金斯大学应用物理实验室)
目前的锂离子电池都由易燃和可燃材料制成,很容易发生灾难性的火灾和爆炸事件,其中大多数是没有任何可辨别的警告就突然发生了。由于具备危险性,三星Galaxy Note7手机就被禁止在飞机上使用,海军也禁止在船上和潜艇上使用电子烟,以减轻此类易燃设备的危险性。
而随着此类电池已经逐渐成为便携式电子设备、电动汽车和电网存储等应用的首选储能工具,因而能够提升其安全性将标志着锂离子电池生产和使用方式的重大转变。
最近,在《化学通讯》杂志上,由APL研究和探索开发部的Konstantinos Gerasopoulos领导的研究小组公布了发现:一种新型water-in-salt(WiS)和water-in-bisalt(WiBS)电解质,当与聚合物基质合并,可以减少水的活动,提高电池的能量,延长其生命周期,同时消除目前锂离子电池中易燃、有毒、高活性的溶剂。研究人员表示,该种电解质是一种安全、强大的替代品。
APL高级研究科学家兼首席研究员Gerasopoulos表示:“从手机到汽车,锂离子电池已经成为日常生活中的常见品,继续提高其安全性对进一步促进储能技术的发展至关重要。自20世纪90年代初期,锂离子电池实现商业化以来,其形状因数都没有发生太大的变化,我们还是采用相同的圆柱形或菱形电池芯,其中的液体电解质和所需的密封包装与此种形状有莫大的关系。”
“我们研究小组致力于采用一种安全性和形状因数都得到改进的聚合物替代易燃的液体电解质,而且最近的论文表示,基于水的柔性聚合物锂离子电池可以在露天环境下制造和操作,而且其可用性和性能都得到了改善。”
在新研究中,团队克服了液态WiBS电解质的限制。由于存在水,液态WiBS电解质本质上是安全的,但是其能量有限,与大多数商用阳极材料无法兼容。研究人员研发了“稳定的、基于WiBS的水性凝胶聚合物电解质(GPEs)。在WiBS存在的情况下,研究人员通过UV介导,聚合水溶性丙烯酸酯从而制成此种电解质。”
科学家们证明,UV固化工艺以及在聚合物中集成WiBS可改善游离水的滞留性,而滞留性将由该聚合物负责协调,从而可以提升其电化学稳定性。研究人员表示:“我们首次证明,目前市场上广泛使用的低成本阳极纳米级钛酸锂(Li4Ti5O12,LTO)可用于水性聚合物锂离子电池,而且能够可靠地循环100多次。”
2017年,研究人员曾研发出具突破性的柔性电池,此次研发的新型聚合物电解质进一步提升了此种电池的损伤容限。
Gerasopoulos表示:“第一代柔性电池在尺寸上不如我们现在制造的电池那样稳定。我们研发的UV固化聚合物是一种独立、机械强度高的薄膜,类似于隐形眼镜。此类电池就算完全暴露在空气中,都可以连续工作几天。而且可以烧、切割它们,或者以其他方式对它们施加压力,它们也仍然可以工作。”
“我们成功提高了GPE的机械强度和电化学稳定性,能够将此种新型过饱和水凝胶聚合物电解质(GPE)从概念验证过渡至实际应用。”
APL材料科学项目区域主管Jeff Maranchi表示:“我们的团队在不断提高柔性锂离子电池的安全性和性能,而且我们希望在一年内能够将该新研究转变成原型。”
关键字:柔性锂离子电池 锂离子电池 WiBS 电解质
引用地址:
科学家研发新型柔性锂离子电池 可被切割但不会起火
推荐阅读最新更新时间:2024-10-23 16:56
挪威科技大学开发新型电解质 用于制造更好的锂离子电池
现在,电动汽车迅猛发展,对锂离子电池的需求也越来越高。据外媒报道,挪威科技大学(NTNU)的研究人员探讨使用不同的材料来制造关键部件,以提高电池的能量密度,延长电动汽车的续航里程。 (图片来源:挪威科技大学) 用硅代替石墨 电池由阴极(带正电)、阳极(带负电)和电解质液体组成,在两个电极之通过电解质液体移动带电粒子,可以提供电力。在锂离子电池中,当电池充电时,锂离子从阴极移动到阳极,并储存在阳极中。当电池放电时,离子移动回阴极,从而产生电流。 现在,大多数锂离子电池都使用石墨阳极。然而,用硅代替石墨有望大幅提高能量密度。NTNU材料科学和工程系Ann Mari Svensson教授表示:“在锂离子电池中,用户
[汽车电子]
研究人员开发新型混合电解质 用于锂离子电池
锂离子电池广泛应用于智能手机和 电动汽车 。在锂离子电池中,锂离子通过电解质在正极和负极之间来回移动,从而实现反复充放电。 (图片来源:东北大学) 通常情况下,有机电解质具有耐电压性和离子导电性,如液态碳酸亚乙酯(EC)及其凝胶,可用作锂离子电解质。然而,由于液体和凝胶易燃,采用更安全的聚合物固体电解质,可能效果更好。以前已有研究人员提出,将聚乙二醇(PEG)等聚合物固体电解质作为耐冲击的锂离子电解质。但是,PEG基聚合物电解质在接近室温时会结晶,导致锂离子电导率大幅下降至10-6 S/cm左右。 分别为照片(左)、扫描电子电显微镜图像(中)和复合电解质结构示意图(右) 据外媒报道,为了解决这一问题,研
[汽车电子]
科学家发现固态锂离子电池新电解质 可显著提高性能
在寻找完美电池的过程中,科学家们有两个主要目标,即创造一种可以储存大量能量的设备,并可安全使用。许多电池含有液体电解质,而该电解质易燃。而固态锂离子电池由完全固体组件组成,具有更高的安全性和能量密度,因此科学家们对该电池非常感兴趣。其中能量密度指的是在给定体积内电池可以存储的能量。 据外媒报道,加拿大滑铁卢大学(University of Waterloo)的研究人员,同样也是美国能源部(DOE)阿贡国家实验室的储能研究联合中心(JCESR)的成员,发现一种兼具多个重要优势的新型固体电解质。 (图片来源:加拿大滑铁卢大学) 该电解质由锂、钪、铟和氯组成,可以很好地传导锂离子,但传导电子很差。这种组合对于创建全固态电池
[汽车电子]
UNIST团队开发出新型电解质添加剂 可用于高能量密度锂离子电池
据外媒报道,韩国蔚山国立科学技术学院(UNIST)的研究人员开发出一种新型电解质添加剂,可以使高能量密度锂离子电池在400次循环后,仍保持其初始容量的81.5%。与商用添加剂相比,如FEC(碳酸氟代亚乙酯)或VC(碳酸亚乙烯酯),该添加剂可提高性能10%至30%。 通过使用电解质添加剂,可生成固体电解质中间相(SEI),它是阳极与电解质相互作用以及延长锂离子电池寿命的关键。而传统固体电解质相间添加剂,如VC和FEC,无法在延长高能量密度锂离子电池(LIB)寿命的同时快速充电。 (图片来源:Nature Communications) 报道称,新方法允许由氟化和甲硅烷基化的电解质添加剂形成高度稳定的电极-电解质界面结构
[汽车电子]
马里兰大学开发可打印固态电解质薄膜 推动下一代锂离子电池发展
锂离子电池被广泛应用于便携式电子设备、 电动汽车 和电网储能系统,但传统锂电池的电解液为有机液体,容易引发火灾和爆炸。相比之下,采用陶瓷固态电解质(SSE)薄膜,可以阻止锂枝晶生长,避免因热失控造成短路,从而提供可行性安全解决方案,同时提升能量密度,推动下一代锂离子电池发展。然而,由于材料质量差,目前使用的SSE薄膜的离子电导率较低,大约在10-8到10-5S/cm之间。 (图片来源:umd) 据外媒报道,由马里兰大学A.詹姆斯·克拉克工程学院(A. James Clark School of Engineering)的Liangbing Hu领导的研究小组,最近开发了一种打印和烧结各种SSE薄膜的新方法。该团队将这种方
[汽车电子]
中外研究人员合作开发新电解质 推动新一代锂离子电池发展
据外媒报道,代尔夫特理工大学(Delft University of Technology)与清华大学的研究人员合作,首次成功制造了一种可与锂金属负极良好匹配的电解质,朝着研制新型锂离子电池迈出了重要一步,这种电池可用于 电动汽车 、智能手机和笔记本电脑等领域。从理论上讲,与目前的电池相比,这种材料可以获得两到三倍的能量密度。 图片来源:Delft官网 锂离子电池充放电时,电解质会缓慢地分解,所产生的废物在电解质和电极之间的界面积累。久而久之,充电的次数会越来越多。 目前,商用电池主要采用碳酸盐作为电解质。在现有锂离子电池中,这些含有碳和氧的化合物可以良好运行,电解质分解非常缓慢,因此,锂离子电池可以用上好几年。但是
[汽车电子]
东京大学研发新型电解质溶液 延长锂离子电池续航时间/增加安全性
据外媒报道,日本东京大学(University of Tokyo)的研究人员首次探索了电能存储的物理和化学特性,并发现了一种改进锂离子电池的新方法。研究人员们不仅成功提高了锂离子电池的电压传输能力,还成功地阻止了危险条件的出现,以免影响到现有电池的电流范围。此种得到改进的锂离子电池能够让 电动汽车 进行长途旅行成为可能,还能够制成新一代家庭储能装置,而且此两种应用中的锂离子电池的防火安全性都得到了提高。 (图片来源:东京大学) 电池可以为各种设备以及汽车供电,不过,虽然电池很有用,但是目前的锂离子电池存在安全问题,有可能会损坏设备并引发火灾。因此,东京大学工程和科学研究生院的研究人员提出了一种方法,可以改善锂离子电池的安
[汽车电子]
德国科学家研发新电解质 让钙电池投入实用并取代锂离子电池
据外媒报道,钙基电池有望以较低的制造成本达到较高的能量密度,最终此种实验室式技术能够取代未来储能系统中的锂离子技术。但是,利用现有的电解质,无法在室温下给该种电池充电。不过,德国卡尔斯鲁厄理工学院(Karlsruhe Institute of Technology,KIT)的研究人员研发出一种非常有前景的电解质,可让可充电钙电池成为可能。 (图片来源:卡尔斯鲁厄理工学院) 高效、大型、低成本的储能系统能够让社会加速向零排放出行和电力供应过渡。但是,KIT的教授,乌尔姆兼卡尔斯鲁厄电化学储能中心CELEST研究平台主任Maximilian Fichtner表示,现在占据主导地位的锂离子技术无法在全球范围内实现该任务。因此,
[汽车电子]