从 L1~L5 自动驾驶芯片发生了哪些变化?

发布者:EE小广播最新更新时间:2023-11-29 来源: EEWORLD关键字:自动驾驶  芯片 手机看文章 扫描二维码
随时随地手机看文章

2018 年,汽车行业“缺芯”潮来得猝不及防,而后波及所有电子元器件品类,自此汽车电子“一芯难求”成为街头巷尾热议的话题。今天,我们看到经过几年的上游扩产,叠加近期汽车终端市场的不景气因素,缺芯现象得到明显缓解,仅剩下少部分主控芯片依旧维持长交付周期的状态。


汽车电动化、智能化下的增量市场相当可观


回顾过去,真的只是电子供应链市场周期性波动带来的“缺芯”问题吗?回答是否定的,究其最深层的原因,还是汽车电动化、智能化趋势下电子电气架构变革带来的增量市场上升速度太快,导致车规级芯片市场供不应求,从而产生“缺芯+涨价”的应激反应。


汽车芯片主要分为功能芯片、功率器件和传感器三大类。在传统燃油车中,平均芯片搭载量约为 500-600 颗/辆,而随着前面提到的汽车电动化、智能化的演进,平均芯片搭载量已提升至 1000 颗/辆,在新能源车中更是超过了 2000 颗/辆,未来随着电车智能化的升级,还有望提升至 3000 颗/辆,甚至更多。


商业价值最大化,L2/L2+是短期内的行业共识


作为汽车智能化的核心,近年来自动驾驶技术的发展非常迅速。当前,部分汽车厂商已经推出了具备 L2 级别自动驾驶功能的车型,比如特斯拉 ModelS、广汽新能源 AionS、小鹏 G3、蔚来 ES8、一汽大众探岳、长安 CS75、WEYVV6、吉利缤瑞等。


那么,到底什么是 L2 级别自动驾驶呢?事实上,市面上有两套自动驾驶分级标准,分别是 2014 年国际汽车工程师学会(SAE)首发的《SAE J3016 推荐实践:道路机动车辆驾驶自动化系统相关术语的分类和定义》,简称《SAE 驾驶自动化分级》;以及 2021 年我国国家市场监督管理总局出台的《汽车驾驶自动化分级》国家标准(标准号:GB/T 40429-2021)。两者的区别在于国家市场监督管理总局、国家标准化管理委员会将 L1 至 L2 级别统称为辅助驾驶,L3 至 L5 级别统则称为自动驾驶。下面,我们以国际标准为例来具体介绍一下。


在《SAE 驾驶自动化分级》标准中,自动驾驶被分为 L0 级~L5 级:


L0 级:无自动化,纯人工驾驶;


L1 级:驾驶支持,以人工操控为主,系统提供适时辅助,常配有制动防抱死系统、车身电子稳定系统等;


L2 级:部分自动化,虽然自动驾驶系统能够完成某些驾驶任务,但驾驶者仍需专心于路况,当系统出现差错时需要人为进行纠正,常配有自适应巡航系统、主动车道保持系统、自动刹车辅助系统和自动泊车系统等;


L3 级:有条件自动化,某些特定场景下的自动驾驶,车辆自动驾驶系统的优先级高于驾驶员,但是驾驶员可以通过紧急按钮随时取得车辆的控制权,如交通拥堵路段的自动跟车行驶、远程倒车入库等,以在公用路面上完成 L3 级别的自动驾驶车辆奥迪 A8 为例,其搭载了 24 个感应器和 41 种驾驶輔助系统软件;


L4 级:高度自动化,在规定的道路和环境中,车辆自动驾驶系统能够自主完成所有的驾驶操作,具备完全处理紧急情况的能力,驾驶员可以做自己想做的事情,如果出了事,责任将全部归属厂商,方向盘、油门、刹车等装置也或被取消;


L5 级:完全自动化,在所有道路和条件下,自动驾驶系统都能够完成驾驶任务,应对任何工况,驾驶员全程无需干预,此时也不再有驾驶舱的概念,汽车更像是一个智能机器人。


事实上,在 2022 年之前,全球汽车产业链上的企业对目标场景并没有那么清晰,所以总希望通过算力抬升来实现硬件冗余,而今天当自动驾驶往高阶发展,从 L2 开始逼近 L3,甚至再往上走,技术和产品批量落地面临的最大挑战是需求侧的承受能力,这正在倒逼车厂进行新一轮的成本管控下的系统优化。通过实践证明,这两年 L2、L2+级别的自动驾驶将成为车厂标配,这一趋势已形成行业共识。


自动驾驶技术演进下,“大芯片”成为标配


随着自动驾驶技术的不断演进,不仅车载芯片的数量在逐步增加,在跨域集中式和中央计算式架构中,大芯片正在成为标配,芯片设计的复杂性急剧升高。


2014 年~2018 年间仍以分布式 E/E 架构为主,跨域集中式架构刚起步,主流玩家 Mobileye、英伟达和瑞萨、TI 等传统 MCU 厂商的上车智驾芯片算力大都在 10TOPS 以下,如牢牢占据 L1~L2 级别视觉 ADAS 芯片市场的 Mobileye EyeQ3/Q4 的算力仅为 0.256TOPS 和 2.5TOPS。


不过也有特殊的,比如 2016 年搭载于特斯拉 HW2.0 平台的英伟达 Tegra Parker SoC 算力就提高到了 24TOPS,同时把 GPU 路线的自动驾驶 SoC 正式推向市场。


2019 年~2023 年间跨域集中式架构发展提速,英伟达开始引领高算力市场,相关电子供应链结构同步发生转变,除了英伟达外,特斯拉自研 FSD 芯片崛起,国产品牌地平线、黑芝麻、芯驰等抓住国产替代窗口开始发力。此时,智驾芯片面向应用场景和汽车终端产品定位出现算力需求分化,行业形成共识,L2/L2+级别自动驾驶在短期内更具商业落地价值,纷纷发力抢占市场。


值得一提的是,在 L2/L2+级别的中高算力自动驾驶市场中,算力需求已经达到了 30 TOPS~1000 TOPS 这个范围,比如 2020 年英伟达发布的针对 L2 级别市场的 Xavier 芯片,已上车小鹏 P7/P5 等车型,算力为 30TOPS;2022 年地平线发布的 J5 芯片,已上车理想、比亚迪、蔚来旗下阿尔卑斯、哪吒等车型,算力为 128TOPS;同年英伟达又针对 L2+级别高阶辅助驾驶车型推出 Orin 芯片,成为主机厂合作的王者,算力为 256TOPS。根据业内人士反馈,Orin 芯片的出现给 Mobileye、地平线、高通、黑芝麻智能、寒武纪等自动驾驶芯片企业带来了空前压力。


EDA 正在助力汽车芯片厂商实现性能和先发优势


对于这些大芯片设计厂商而言,如何缩减上市时间取得先发优势,在提高算力、安全等级的同时,改善芯片的 PPA(功耗、性能和面积),成为共同的追求目标。


传统的 EDA 工具常使用“经验法则”,需要设计人员根据直觉和经验进行优化,这种建模和仿真技术存在很多局限性,包括:无法从以前的设计中汲取经验,导致生产力受限且设计不够准确;多次迭代导致设计时间增加;HLS 通常需要更多的时间来完成综合;布局和布线取决于设计师的预测/经验,会增加运行时间;就时间和资源而言,制造成本高昂等。与此同时,车规级芯片的质量在很大程度上取决于底层半导体技术和设计规则,因此对 EDA 又提出了更高的要求。


所以对于一颗车规级大芯片而言,为了确保设计的正确性,必须在生产制造前进行大规模的仿真和验证,而芯片的算力规模越大、集成度越高,仿真验证的过程就会越复杂,设计人员需要更快地实现收敛和验证,来降低成本并提高结果质量。同时,传统的随机/自动测试模式生成(ATPG)方案在故障覆盖率方面已经不能满足实际需求。因此,将 AI 和 EDA 融合是大势所趋。


Cadence 作为 EDA 领域的深耕者和领导者,可以提供汽车智能设计所需的全部 EDA 工具、设计流程等,帮助工程师加速自动驾驶设计。同时,通过将 AI/ML 功能融入现有的 EDA 工具中,能够从手动到完全自动化不同等级产生更好、更可预测的结果,助力汽车厂商利用多学科分析和优化(MDAO)技术提高整体设计,从而实现更快速、更优质的结果,系统的精确行为建模也提高了产品保真度和安全性。


下面介绍两个 Cadence 在自动驾驶中所提供的典型解决方案——Cadence Tensilica 处理器 IP、Xcelium ML。


Cadence Tensilica 处理器 IP


Tensilica 处理器 IP 是 Cadence 根据应用需求量身定制的差异化处理器系列 IP,可满足各类 ADAS 硬件加速平台需求,其 DSP 内核 Tensilica ConnX 支持用于 L2 级别自动驾驶下 ADAS 的激光雷达、毫米波雷达中的高性能数据处理,提供性能、功耗和面积的理想组合,同时其 DSP 处理器 Tensilica Vision 与 Tensilica Al 处理器的集成可轻松实现视觉传感器数据处理。


对于汽车芯片厂商来说,在将 Tensilica DSP 产品集成到系统级芯片的同时,可以快速、轻松地进行软硬件划分的探索分析,满足将来算法的演进同时大大降低 CPU,GPU 和 AI 处理器的负载。同时使用 Tensilica Instruction Extension(TIE)语言自动生成处理器扩展和与之匹配的软件工具,并创建特定领域的差异化解决方案。


值得一提的是,搭载 FlexLock 的 Tensilica Xtensa 处理器现已通过车规级安全认证,完全符合汽车安全完整性等级 D 标准,提供 ASIL D 系统级和 ASIL D 随机故障防护,适用于功能安全(FuSa)应用,可以帮助更多大芯片设计厂商将安全模块集成到 SoC 中,减少模块设计和验证时间,增加产品先发优势。


以汽车雷达模块中的 SoC 为例,其通常由多个处理元件组成,包括控制器 CPU 和一个或多个 DSP 等。当 SoC 中的晶体管出现随机故障时,包括晶体管或其他物理元件磨损并卡在逻辑“0”或“1”处,由于 α 粒子引起的静态故障导致内存位从“0”翻转为“1”等永久性故障,或是由 SoC 中的信号串扰等噪声引起的瞬态故障等,这些故障都可能发生在与处理器紧密耦合的逻辑门或存储器中的处理元件中,最终造成安全问题。



因此,系统设计人员必须设定一个安全目标,即 DSP 中的随机故障不得导致车道标记等物体检测失败。该安全目标将指导设计人员采取适当的安全机制,以便在检测到随机故障时,安全控制器会收到通知并可以采取措施,例如重新初始化 DSP 等。如果 DSP 已经进行处理,则安全控制器负责采取措施确保在 DSP 重新初始化之前/期间达到安全状态。


在这种设计中,位于“安全岛”中的安全控制器可以起到安全关键决策的作用。当然,控制器也可能会出现随机故障,如果控制器检测到 DSP 故障,但控制器采取了错误的操作来响应该故障,从而使系统处于不安全状态,这类故障可能会产生严重后果,这种情况下设计人员就需要采用冗余的设计方法,让两个控制器同步运行,来大大降低此类事件发生的可能性。


综上,为了实现系统级别的安全目标,像雷达模块中的 SoC 这样的处理器设计是非常复杂的,所以芯片设计企业通常会向可靠的第三方购买 IP,来简化设计流程,提高流片的成功率,而 Tensilica 处理器 IP 是个不错的选择。


Xcelium ML


Xcelium Logic Simulation 是 Cadence 为 IP 和系统级芯片验证收敛提供的一款高速的仿真器,可为 SystemVerilog、VHDL、SystemC®、e、UVM、混合信号、低功耗和 X 态传播(X-propagation)提供业内优异的核心引擎性能,从而加快验证吞吐量。


其中,Xcelium Machine Learning(ML)App 利用专有的机器学习技术来缩短回归时间,可从以往的回归运行中学习并指导 Xcelium 随机引擎,在实现相同覆盖率的前提下大幅度减少仿真回归周期,或者产生特定覆盖点的激励触发更多的 bug来提高验证质量。


同时,Cadence 对特定领域还提供了相应的 App,包括混合信号、基于机器学习的测试压缩和功能安全,可以帮助汽车芯片设计团队尽早实现对 IP 和系统级芯片(SoC)设计的验证收敛,非常适合 Level 2+ 级以上 SoC 设计。


瑞萨电子汽车 SoC 业务部杰出工程师 Tatsuya Kamei 对此表示:“将 Xcelium Machine Learning(ML)App 纳入验证流程,有助于我们在紧迫的期限内,通过更少的回归测试来加速完成覆盖率的收敛任务,同时最大限度地提高验证性能和整体验证效率。”


而在这段表述的背后,是瑞萨电子借助 Verisium AI-Driven 验证平台,整体调试效率提高了 6 倍,整体随机验证回归缩短了 66%;以及依托 Xcelium ML App,实现了回归用例 2.2 倍压缩和 100% 覆盖率收敛的事实。


此外值得一提的是,瑞萨电子在不断使用机器学习进行回归迭代过程中,在实现 100% 覆盖率的前提下,将工作量减少了 3.6 倍。


瑞萨电子利用机器学习大大减少回归运行次数(从 3774 次减少到 1168 次),成功在规定时间内实现产品上市。除了节省资源、时间和加速覆盖率收敛外,Xcelium ML Apps 还为瑞萨电子节省了约 27 个工时。


写在最后


汽车产业的变革还在继续,芯片和电子系统的重要性只会越来越高。不可否认的是,在克服未知挑战的路上缺少不了整个产业链的通力合作,而 EDA 和 IP 将是贡献者链路上重要的一环。


关键字:自动驾驶  芯片 引用地址:从 L1~L5 自动驾驶芯片发生了哪些变化?

上一篇:RTI公司举行第二届汽车论坛,整合生态系统支持软件定义汽车开发
下一篇:中国汽车论坛 | 芯联集成用技术创新打造核心竞争力

推荐阅读最新更新时间:2024-11-03 07:38

2022 汽车芯片行业研究报告
百年汽车行业正在经历大变革时代,汽车向电动化、智能化转化是大势所趋,根据海思在2021中国汽车半导体产业大会发布的数据,预计2027年汽车半导体市场总额将接近1000亿美元。而我国作为汽车制造大国,同样对汽车半导体需求旺盛,预计到2025年市场总额将达到137亿美元。 展望未来,功能集中已然成为汽车芯片行业发展的必然趋势。随着汽车进入了电动化+智能网联的时代,新能源、智能化、自动驾驶四个领域趋势带来了新的半导体需求,也为国内新进芯片企业进入汽车领域带来全新的产业机遇。 01 何为车规级芯片 “车规”的关注度,正变得越来越高,但何为真正意义上的车规级芯片?市场声音仍有些嘈杂,有的厂商通过AEC-Q100认证就声称达到车规
[汽车电子]
2022 汽车<font color='red'>芯片</font>行业研究报告
用VHDL设计专用串行通信芯片
    摘要: 一种专用串行同步通信芯片(该芯片内部结构和操作方式以INS8250为参考)的VHDL设计及CPLD实现,着重介绍了用VHDL及CPLD设计专用通信芯片的开发流程、实现难点及应注意的问题。     关键词: VHDL FPGA CPLD UART 统计时分复用器 在通信系统中,通信芯片是整个硬件平台的基础,它不仅完成OSI物理层中的数据发送和接收,还能根据传输方式和协议的不同实现不同的数据校验方式及数据组帧格式。 目前,许多厂商都提供通用的串行通信芯片,其传输方式分为同步方式和异步方式。其中,异步芯片大多与INTEL的8250芯片兼容;而同步方式,由于一般涉及到所支持的传输协议(BSC、HDL
[工业控制]
芯片厂回补库存 半导体供应链渐入佳境
尽管第1季传统淡季效应发酵,加上工作天数缩短,不利半导体供应链出货表现,然因产业链库存水位已明显偏低,国内、外芯片供货商客户库存需求看涨,使得近期晶圆代工及封测业者急单、短单不断,台积电已大胆提出第1季营收将较2011年第4季持平的乐观看法,更推助部分厂商提前启动库存回补机制,第1季台湾半导体产业链已出现景气淡季不淡契机。 半导体业者指出,台积电第1季提出单季营收持平的财测目标,让很多业者感到意外,并开始在上游半导体产业链产生一些变化,原本就有一些筹码优势可提前回补库存的厂商开始加大下单力道,以掌握更好的晶圆代工价格及更佳先进制程成本效益,并激励其他芯片供应商亦纷跟进,以免错失瓜分市场大饼商机。 部分台系消费性电子芯
[半导体设计/制造]
智能汽车芯片加码,来自韩国的独角兽企业Telechips有不同解法
目前头部新能源车企已逐步完成电子电气架构的升级转型,从分布式向域集中式,一些甚至开始出现中央计算架构的雏形。消费者对智能化功能的更深层次的追求,不仅“卷”了主机厂,也给车载AI芯片带来史无前例的机会。 根据Gartner预计,到2025年,全球车载AI芯片市场规模将增至236亿美元,中国市场将包揽其中的68亿美元,而2030年这个数字有望进一步增加到124亿美元,年复合增长率为28.14%。 这注定是一个被颠覆的时代。传统分布式E/E架构时期,瑞萨、NXP、德州仪器等占据了车机芯片绝大部分市场份额。之后,高通凭借庞大的消费电子业务优势,在智能座舱领域展现出压倒性优势。眼下,国内主流中高端智能汽车的标配方案多围绕“高通骁龙8
[汽车电子]
智能汽车<font color='red'>芯片</font>加码,来自韩国的独角兽企业Telechips有不同解法
iSuppli:2011年Wi-Fi芯片组出货量将增长一倍
预计今年WLAN芯片组出货量将达到7.389亿个,比2010年的3.668亿大增101.5%。这些芯片组用于各类电子产品之中,使消费者能够共享内容。预计明年其出货量将超过10亿个,2014年超过20亿个,如图所示。 WLAN芯片组具有独立与嵌入两种形式。 对于独立WLAN芯片组,2010年独立客户接入芯片组、接入点/桥接路由器器件和其它Wi-Fi嵌入设备的总体出货量达3.66亿个,比2009年剧增135%。 至于第二类的嵌入解决方案,提供连接性的WLAN芯片组已渗透到多种电子产品之中,包括笔记本电脑、手机、平板电脑、高清电视、便携媒体播放器、打印机、相机、摄像机、DVD和蓝光播放器、游戏机、个人导航设备和高端
[网络通信]
iSuppli:2011年Wi-Fi<font color='red'>芯片</font>组出货量将增长一倍
福特成立自动驾驶汽车子公司 2030年前预计投资40亿美元
7月25日,福特汽车公司宣布成立福特自动驾驶汽车子公司(Ford AV LLC),业务范围将包括所有自动驾驶汽车相关的运营业务,同时福特也宣布了一系列组织架构调整,旨在提升业务运营效率并推动盈利增长。 福特汽车将公司旗下现有的自动驾驶业务整合至新成立的福特自动驾驶汽车子公司,其中包括自动驾驶系统整合、自动驾驶汽车研究及前瞻工程、自动驾驶汽车交通服务网络拓展、用户体验、业务战略以及拓展团队。 新公司总部位于底特律的福特Corktown园区,并将持有福特汽车在Argo AI公司的股权,Argo AI是福特位于匹兹堡的自动驾驶系统开发合作伙伴。 福特汽车预计到2023年底前将投入40亿美元用于其自动驾驶汽车相关业务的发展,其中包括对Ar
[汽车电子]
【C51自学笔记】闪烁灯+流水灯(四种方法) + 74HC573芯片+keil4软件仿真(debug)
AT89S52: P0:不含上拉电阻,需要外接 P1,P2,P3:内部含上拉电阻 左下方是个晶振 51单片机的复位是高电平复位(默认是高电平输出)-如何复位:赋予高电平脉冲 复位的接入方法 如何复位详解:RST含高电平脉冲 复位键断开:RST是低电平(接地) 复位键闭合:闭合回路上,RST获得高电平,计算V(rst) = 4.7 v 为高电平 搭建最小系统: 接入晶振 接入RST 接入上拉电阻并为上拉电阻提供VCC EA接入VCC(代表使用片内存储器) 接入0(代表使用片外存储器) 解释573芯片: OE上加-:低电平有效,高电平无效。 Z:高组态,既不是高,也不是低。接什么平是什么平,相当
[单片机]
【C51自学笔记】闪烁灯+流水灯(四种方法) + 74HC573<font color='red'>芯片</font>+keil4软件仿真(debug)
中国自主知识产权无线传感器网络SoC芯片
在近日举行的传感器网络国家标准工作组第六次全会上,中科院上海微系统与信息技术研究所、无锡物联网产业研究院等传感器网络标准工作组成员单位联合发布了名为VW628、WSNS1_SCBR的两款中国自主知识产权的无线传感网SoC芯片   无锡物联网产业研究院邢博士介绍,两款芯片中,VW628为国内首款符合IEEE802.15.4c和CWPAN(中国无线个域网标准项目组)标准的无线传感网收发SoC芯片,该芯片集成了射频收发、基带处理和MAC加速功能,是物联网无线通信的核心器件。   另外,WSNS1_SCBR为中国首款符合IEEE802.15.4g标准的验证型全集成传感网节点SoC芯片,该芯片集成传感探测模块、无线通信模块、主控处理器及
[模拟电子]
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved