光通信与光纤传输网

发布者:EternalSunset最新更新时间:2008-06-17 来源: 山东电视网关键字:调谐  加密  同轴  高速  环路  接入  光纤 手机看文章 扫描二维码
随时随地手机看文章

  光通讯是人类最早应用的通讯方式之一。从烽火传递信号,到信号灯﹑旗语等通讯方式,都是光通讯的范畴。但由于受到视距﹑大气衰减﹑地形阻挡等诸多因素的限制,光通讯的发展缓慢。

  一、 光纤传输

  直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶段。

  光纤传输有许多突出的优点:

  1.频带宽

  频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频段,载波频率为48.5MHz~300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频段高出一百多万倍。尽管由于光纤对不同频率的光有不同的损耗,使频带宽度受到影响,但在最低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分(多模光纤的频带约几百兆赫,好的单模光纤可达10GHz以上),采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。

  2.损耗低

  在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。

  3.重量轻

  因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,加上防水层、加强筋、护套等,用4~48根光纤组成的光缆直径还不到13mm,比标准同轴电缆的直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。

  4.抗干扰能力强

  因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在光纤中传输的信号不易被窃听,因而利于保密。

  5.保真度高

  因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅光纤系统的载波组合三次差拍比C/CTB在70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。

  6.工作性能可靠

  我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。

  7.成本不断下降

  目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,光纤传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用光纤传输方式扫清了最后一个障碍。由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成本还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后光纤传输将占绝对优势,成为建立全省、以至全国有线电视网的最主要传输手段。

  二、激光和激光器

  激光是光通讯的最理想光源。现在,可以生产多种激光器,可产生多种功率和波长的激光。

  由于激光是以受激辐射的光放大为基础的发光现象,同以自发辐射为基础的普通光源相比,具有许多鲜明的特点。

  1.单色性好

  我们知道,不同颜色的光具有不同的波长。所谓单色光,实际是波长范围很小的一段辐射。谱线宽度越窄(即波长范围越小),光的单色性就越好。需要说明的是,这里的谱线宽度是未调制前激光所包含的波长范围,它与激光调制后的频带宽度是两个不同的概念。调制前的谱线宽度越窄,调制后可以有效利用的频带宽度就越宽。

  因为激光是在特定能级之间实现粒子数反转后产生的受激辐射,又经过谐振腔的选频作用,使其输出光的谱线宽度很小,即具有很好的单色性。

  利用激光的单色性好,谱线分辨率高,可用来研究物质的能级和光谱的精细结构,制成一年内误差不超过一微秒的标准钟。

  2.方向性好

  我们通常用光的发散角来描述其方向性,发散角越小,方向性越好。普通光源中最好的探照灯,其发散角为0.1rad(弧度)。如果把它照射到离地球40万公里的月球上(这实际是不可能的),其光斑直径有几万公里。在激光器中,由于受激原子发光的方向与外来光相同,再加上谐振腔只允许沿轴线传播的光得到放大,使输出激光的方向性很好,发散角可达10 rad,把它照射到月球上,光斑直径不到2km。利用激光的方向性好,可用于测距、定位、导航等。

  3.亮度高

  由于激光器可以做到断续发光,使其能量积累到一定程度再突发出来,因而具有很高的功率,最大可达10 W,再加上激光的方向性好,使其亮度极高,比太阳的亮度还高出上千亿倍,只有氢弹爆炸瞬间的强烈闪光才能与之相比。利用激光的高亮度,可以在局部范围产生10万度以上的高温,进行打孔、焊接、手术以及可控热核反应等等。

  4.相干性好

  所谓相干性是指两束光能够发生干涉,形成稳定的明暗相间干涉图像的特性。由于受激辐射原子发出的光在频率、位相、振动方向等方面都同外来光子一样,使激光具有很好的相干性比较接近于理想的、完全相干的电磁波。一般单色光源发出光的相干长度不超过O.1m,但激光的相干长度可达几十公里。这里的相干长度是指把一束光分成两束,让它们经过不同的路程,能够产生干涉的最大光程差。利用激光的相干性好,可以进行全息摄影,进行精密测量。

  现代光纤网干线长度一般较长(几十公里以上),且传输频道较多,从系统质量、可靠性,以及经济上各方面考虑,都应该选择调幅光纤系统。

  三、光网络的结构

  光网络的基本结构类型有星形、总线形(含环形)和树形等3种,可组合成各种复杂的网络结构。光网络可横向分割为核心网、城域/本地网和接入网。核心网倾向于采用网状结构,城域/本地网多采用环形结构,接入网将是环形和星形相结合的复合结构。光网络可纵向分层为客户层、光通道层(OCH)、光复用段层(OMS)和光传送段层(OTS)等层。两个相邻层之间构成客户/服务层关系。

  客户层:由各种不同格式的客户信号(如SDH、PDH、ATM、IP等)组成.

  光通道层:为透明传送各种不同格式的客户层信号提供端到端的光通路联网功能,这一层也产生和插入有关光通道配置的开销,如波长标记、端口连接性、载荷标志(速率、格式、线路码)以及波长保护能力等,此层包含OXC和OADM相关功能.

  光复用段层:为多波长光信号提供联网功能,包括插入确保信号完整性的各种段层开销,并提供复用段层的生存性,波长复用器和高效交叉连接器属于此层.

  光传送段层:为光信号在各种不同的光媒体(如G.652、G.653、G.655光纤)上提供传输功能,光放大器所提供的功能属于此层。

  从应用领域来看,光网络将沿着"干线网→本地网→城域网→接入网→用户驻地网"的次序逐步渗透。

  四、光复用技术

  为了进一步提高光通信的传输效率可以采用光复用技术。所谓光复用,是在光域上进行时分复用、频分复用和波分复用,而不是在无线电波段进行复用。

  1、光时分复用(OTDM)

  光时分复用也是把信号的传输时间分成一个个时隙,不同路的光信号在不同的时隙中传输。图1是一个光时分复用发射机的示意图。

                               

  图1中,锁模激光器产生激光脉冲,其频率(不是光信号的频率,而是单位时间内的光脉冲数)为5GHz,即光脉冲串中相邻光脉冲之间的间隔为200ps,而每个光脉冲的3dB宽度为14ps,说明相邻两个光脉冲之间的间隔较大,还可以用来传输其它光脉冲,这就为时分复用创造了条件。该脉冲串经过光纤放大器放大以后,由分光器分成四条支路,分别进入四个马赫一曾德尔干涉仪式调制器(M—z调制器),被四个电信号调制,得到四个比特率为5Gb/s的光数字信号流,后面三个光信号经过不同的时间延迟进入光合路器,正好镶嵌在第一列光脉冲之间,合成为比特率20Gb/s的光数据流,完成了光的时分复用。复用后的信号经过光纤放大器放大,送入光纤传输。在接收端,经过相反的过程进行解复用、解调,又可得到四条支路的电信号。该系统在5GHz的频率上得到了20Gb/s的数据流,具有较高的传输效率。这就是采用光时分复用的优点。

  2、光波分复用(WDM)

  所谓光波分复用,是将波长间隔为数十纳米的多个光源独立进行调制,让其在同一条光纤中传输,可使光纤中传输的信息容量增加几倍至几十倍。光的波分复用按传输方向可分为单向波分复用和双向波分复用。在单向波分复用系统中,发射端有N个发出不同波长光的激光器,把它们分别进行调制后,利用光的复用器合起来,耦合进一根光纤中传输。在接收端再利用解复用器把这N束波长不同的光载波分开,分别送至相应的光检测器得出各自的信息。

  波分复用系统的主要器件是具有不同波长的光源和调制器、解调器、复用器和解复用器等,最具有特色的是复用器和解复用器。复用器和解复用器是双向可逆器件,即同一器件既可作复用器,又可作解复用器,我们把它们统称为波分复用器件。

  描述波分复用器件的指标主要有插入损耗、隔离度和信道带宽等。插入损耗是指由于波分复用器件的引入而造成的信号损失,我们希望它越小越好。隔离度是指不同信道之间互相影响的程度,其值越大越好。但一般在发射端由于光源的线宽较窄,对隔离度的要求不太高;而在接收端,由于光检测器在很宽的频率范围内都有较高的灵敏度,对波分复用器件隔离度的要求较高。信道带宽是波分复用器件各输入光源的最小波长间隔,也希望它越小越好。

  按照波分复用的原理,有干涉滤光器型、光纤耦台型和光栅型三种波分复用器件。它们分别是由干涉滤光器、光纤耦合滤光器和光栅型滤光器所组成。

  3、光的频分复用

  同波分复用一样,频分复用也是将多个光源独立进行调制,让其在同一条光纤中传输。但频分复用时,光载波之间的波长(或频率)间隔更小些(例如波长间隔小于1nm),可以容纳更多的光载波。我们知道,在光纤的1.31um窗口中低损耗区为1.26um~1.36um,带宽约100nm,在1.55um窗口中低损耗区为1.48um~1.58um,带宽也是100nm。在这200nm带宽范围内,如果采用后面介绍的相干光通信技术,可使频分复用光载波之间的波长间隔小到0.1nm,则在200nm范围内可以安排2000个光载波,若每一光载波传输100套电视节目,则在一根光纤中可以传输20万套电视节目。

  由于频分复用光载波之间的间隔更小,更适于用频率来描述。利用波长与频率的关系容易求出在1.55um窗口,波长间隔为12GHz.

  五、相干光通信  

  在相干光通信中主要利用了相干调制和外差检测技术。所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅(而不象强度检测那样只是改变光的强度),这就需要光信号有确定的频率和相位(而不象自然光那样没有确定的频率和相位),即应是相干光。激光就是一种相干光。所谓外差检测,就是利用一束本机振荡产生的激光与输人的信号光在光混频器中进行混频,得到与信号光的频率、位相和振幅按相同规律变化的中频信号。

    

                          

  图2是相干光数字通信系统的原理框图。在发射端,频率稳定、具有确定相位的光载波在调制器中被数字信号调制成已调光,进入光匹配器,使已调光的空间分布与光纤基模相匹配,已调光的偏振状态与光纤本征偏振态相匹配。从光匹配器输出的已调光经过光纤传输到接收端,先要经过接收端的光匹配器,使信号光的空间分布和极化方向与本振光信号相匹配以便进人混频器与本振光信号混频时能获得尽可能大的混频增益。从混频器输出的中频信号一般属于微波频段,进人工作频率为数吉赫兹的中频放大器进行中频放大和滤波。然后进人解调器进行解调,得到基带信号,经过基带放大器放大、滤波,再进行判决再生,输至终端设备。

  若接收端选择本振光频率正好等于发射端调制时的光载波频率,混频后所得的差频载波的频率为零,直接得到基带信号。这种方式称为零差检测,它的灵敏度很高,但技术上困难较大。

  在相干光通信中,只有光信号具有确定的频率和相位,才能进行相干解调。这就要求激光器发出光的单色性好(谱线宽度非常窄)、频谱纯、频率非常稳定。此外,还要求激光器的结构紧凑,体积小;激光器发出激光的频率可变,调谐范围宽。目前能够满足这些条件的激光器主要有长外腔激光器(LEC)、分布反馈激光器(DFB)和分布布拉格反射激光器(DBR)等。

  由于相干光通信具有灵敏度高、选择性好的优点,可以用来做成大容量、长距离的干线网。例如利用其灵敏度高的优点在1.55um窗口组成传输速率为622Mb/s,中继距离为150km的数字传输网。如果再利用选择性好的优点,采用波分复用技术,把相邻信道间隔取为10GHz,折合0.08nm,以32个信道为一组,需要2.5nm,留2.5nm的保护带,共需5nm宽。在1.31umh和1.55um两个窗口的总带宽为200nm,可纳40组,总容量可达800Gb/s。

  在光纤有线电视系统中,如果采用相干光通信技术,可以建成光纤到户的系统。在该系统中,由于选择性的提高,可以传输多得多的频道;由于接收机灵敏度的提高,使带动的用户数大大增加;采用可调谐本振接收机,用户可以方便地随时选择信道。例如采用调谐范围为500GHz的DBR激光器进行FSK调制,可传输码率为100Mb/e的高清晰度电视200套。在试验系统中,光发射机输出光功率为2.2dBm,接收机灵敏度达——44.5dBm,传输10Km的光纤损耗为2.2dB,连接器损耗2dB,留4.5dB的余量,还可直接带动2048个用户。

  六、综合信息网技术

  我国光纤网最早应用与电信系统的干线传输网和有线电视干线网。随着经济的发展,信息浪潮风起云涌,全球范围内对通信基础设施的需求空前高涨。新数据业务、商务用户、住宅用户、互联网应用及家用电脑和internet的普及,迫切要求宽带网的发展。并在其上整和话音、数据和视频业务,包括VOD、交互式远程教学、远程医疗、网上购物、E-mail、Internet 浏览等多种功能。

  在电信网和广电网的改造建设中骨干层主要采用下面几种技术:

  异步转移模式(ATM)

  IP over ATM的基本原理和工作方式为:将IP数据包在ATM层全部封装为ATM信元,以ATM信元形式在信道中传输。当网络中的交换机接收到一个IP数据包时,它首先根据IP数据包的IP地址通过某种机制进行路由地址处理,按路由转发。随后,按已计算的路由在ATM网上建立虚电路(VC)。以后的TP数据包将在此虚电路VC上以直通(Cut一Through)方式传输而下再经过路由器,从而有效地解决了IP的路由器的瓶颈问题,并将IP包的转发速度提高到交换速度。

  IP Over ATM具有以下特点:

  优点:(1)由于ATM技术本身能提供QoS保证,因此可利用此特点提高IP业务的服务质量。

  (2)具有良好的流量控制均衡能力以及故障恢复能力,网络可靠性高。

  (3)适应于多业务,具有良好的网络可扩展能力。

  (4)对其它几种网络协议如IPX等能提供支持。

  缺点: (1)目前IP over ATM还不能提供完全的QoS保证。因为目前还没有一种标准方法实现:P优先级(Cos)分类映射到ATM的06。

  (2)对IP路由的支持一般,IP数据包分割加入大量头信息,造成很大的带宽浪费(20%~30%)。

  (3)在复制多路广播方面缺乏高效率。

  (4)由于ATM本身技术复杂,导致管理复杂。

  2、POS技术(IP over SDH技术)

  IP Over SDH以SDH网络作为IP数据网络的物理传输网络。它使用链路及PPP协议对IP数据包进行封装,把IP分组根据RFC1662规范简单地插入到PPP帧中的信息段。然后再由SDH通道层的业务适配器把封装后的IP数据包映射到SDH的同步净荷中,然后向下,经过SDH传输层和段层,加上相应的开销,把净荷装入一个SDH帧中,最后到达光层,在光纤中传输。

  IP over SDH具有以下特点:

  优点:(1)对IP路由的支持能力强,具有很高的IP传输效率。

  (2)符合Internet业务的特点,如有利于实施多路广播方式。

  (3)能利用SDH技术本身的环路,故可利用自愈合(Self-healing Ring)能力达到链路纠错;同时又利用OSPF协议防止备和链路故障造成的网络停顿,提高网络的稳定性。

  (4)省略了不必要的ATM层,简化了网络结构,降低了运行费用。

  缺点:(1)仅对IP业务提供好的支持,不适于多业务平台。

  (2)不能像IP crver ATM技术那样提供较好的服务质量保障(QoS)。

  (3)对IPX等其它主要网络技术支持有限。

  3、 IP over WDM IP over WDM,也称光因特网。

  其基本原理和工作方式是:在发送端,将不同波长的光信号组合(复用)送入一根光纤中传输,在接收端,又将组合光信号分开(解复用)并送入不同终端。IP over WDM是一个真正的链路层数据网。在其中,高性能路由器通过光ADM或WDM耦合器直接连至WDM光纤,由它控制波长接入、交换、选路和保护。

  IP over WDM的帧结构有两种形式:SDH帧格式和千兆以太网帧格式。 支持IP over WDM技术的协议、标准、技术和草案主要有:

  DWDM(密集波分复用)一般峰值波长在1~10nm量级的WDM系统称为DWDM。

  此系统中,每一种波长的光信号称为一个传输通道(channel)。每个通道都可以是一路155Mb/s、622Mb/s、2.5G/b甚至10Gb/s的ATM或SDH或是千兆以太网信号等。 DWDM提供了接口的协议和速率的无关性,在一条光纤上,可以同时支持ATM、SDH和千兆以太网,保护了已有投资,并提供了极大灵活性。

  优点: (1)充分利用光纤的带宽资源,极大地提高了带宽和相对的传输速率

  (2)对传输码率、数据格式及调制方式透明。可以传送不同码率的ATM、SDH/Sonet和千兆以太网格式的业务。

  (3)不仅可以与现有通信网络兼容,还可以支持未来的宽带业务网及网络升级,并具有可推广性、高度生存性等特点。

  缺点: (1)目前,对于波长标准化还没有实现。一般取193.1THz为参考频率,间隔取1OOGHz。

  (2) WDM系统的网络管理应与其传输的信号的网管分离。但在光域上加上开销和光信号的处理技术还不完善,从而导致WDM系统的网络管理还不成熟。

  (3)目前,WDM系统的网络拓扑结构只是基于点对点的方式,还没有形成“光网”。

  通过以上的分析比较,我们可以发现,在高性能、宽带的IP业务方面,IP over SDH技术由于去掉了ATM设备,投资少、见效快而且线路利用率高。因而就目前而言,发展高性能IP业务,IP over SDH是较好选择。而IP over ATM技术则充分利用已经存在的ATM网络和技术,发挥ATM网络的技术优势,适合于提供高性能的综合通信服务,因为它能够避免不必要的重复投资,提供Vcrice、Video、Data多项业务。对于IP over WDM技术,它能够极大地拓展现有的网络带宽,最大限度地提高线路利用率,并且在外围网络以千兆以太网成为主流的情况下,这种技术能真正地实现无缝接入。应该说,IP over WDM将代表着宽带IP主干网的明天。

  七、宽带网接入技术

  带宽接入技术的分类

  1﹑光纤接入方式(FTTX)

  光纤接入网可以有光纤到户(FTTH)、光纤到大楼(FTTB)、光纤到路边(FTTC)、光纤到小区(FTTZ)等多种形式,利用光纤传输介质,提供高带宽、高可靠性和高抗干扰性的数据传送。

  2﹑高速数字环路(XDSL)技术

  基于XDSL技术的铜线接入技术适应于已有的电话基础网络,通过2B1Q、CAP(无载波调幅调相)、DMT(离散多音)等频带编码技术,挖掘双绞线高频段带宽的资源,通过带宽倍增技术实现宽带接入,满足高数据通信需求,主要技术有ADSL、HDSL、VDSL﹑ SDSL﹑DDN等。

  ①ADSL可在现有电话线上提供宽带业务,上下传速率"不对称",避免了常规对称传输中的用户侧干扰,提高传输速率,延长传输距离。

  下行信道速率2.048、4.096、6.144、8.192Mbps,分成数个1536Kbps的A信道,A信道能传送MPEG-1质量的图像;上行信道速率640Kbps;可选双工信道速率为160、384、544、576Kbps,传输距离3~6公里。

  ADSL局端设备支持ATM/OC3接口,用户端设备支持ATMF/25Mbps或10BaseT接口。

  ADSL调制技术主要有DMT(离散多音频)和CAP(无载波幅度相位调制),将0-1.1MHz频段划分成256个频宽4.3KHz的子频带;其中4KHz以下频段传送传统电话业务,20-138KHz传送上行信号,138K-1.1MHz传送下行信号,电话业务不受数据传送影响。

  ADSL大规模推广存在问题:①提供的最高速率对距离和铜线质量敏感;②产品标准待完善,不同调制技术产品不兼容;③提供的最高速率仍然有限;④设备价格较高。

  ②HDSL使用两对或三对双绞铜线,典型速率2Mbps,可实现高速双向传输,距离3-5Km,误码率(BER)低;通过复用技术同时传送多路语音、视频和数据。

  HDSL主要用于替代传统T1/E1接入技术,为用户提供30B+D或2Mbps租用线,也可传送30路话音,适用于连接PBX(专用小交换机)、数字局间中继、ISP和校园网等。

  目前没有标准的HDSL设备,不同厂家的设备互不兼容。

   ③VDSL是传输距离很短的铜线技术,上下信道用频分复用分开,采用CAP、DMT和DWMT(离散小波多音频)三种编码方式。

  VDSL上下行速率不对称,下行速率3档:13M、26M、52Mbps,相应传输距离1500m、1000m、300m;上行速率也有3档:1.6M、2.3M、19.2Mbps;主要适用于ATM网络,规范制定刚完成,一些产品已推出。

  VDSL局端设备支持ATM/OC3/OC12接口,用户端设备支持ATMF/25Mbps连接。

  ④SDSL也是一种对称铜线传输技术,使用单根双绞线,提供双向高速可变速率连接,速率范围160K-2.084Mbps,0.4mm双绞线上最大传输距离3Km。

  ⑤DDN以及帧中继(FR)等主要是专线用户使用,传输端和尾端连接专用设备,通过专网通信,头端出口(如DDN路由器)都有10M、100M以太网接口。

  3﹑宽带无线接入方式(如MMDS、LMDS)

  主要适应于不便于铺设光纤,尤其是电话基础网络较薄弱的地区。用此技术可以拓展宽带用户的接入,利用无线信道实现高速数据、VOD视频点播、广播视频和电话业务等。主要技术有LMDS(本地多点分配业务)、MMDS(多通道多点分配业务)。LMDS这种新型宽带无线接入技术,工作在10GHz~40GHz的频段范围,可用的频谱带宽最大能达到1GHz以上,能够提供从普通话音到2Mbps~32Mbps甚至高达155Mbps的宽带数据业务,LMDS系统主要由骨干网、基站、用户终端设备、网管系统组成,而且我国无线电频率主管部门目前正在进行LMDS的频率规划工作,中国网通也正在进行LDMS接入的测试。MMDS系统组成与LMDS相似,工作频段在3GHz左右,因而可利用的频谱资源比LMDS少,但其传输距离远远超过LMDS。

  4﹑HFC(混合光纤同轴网络)Cable Modem 接入

  基于同轴电缆接入的HFC方式是在传统同轴CATV 技术基础上发展起来的,利用频分复用技术实现模拟电视、数字电视、电话和数据同时传送。系统成本比光纤用户环路低,并有铜线及双绞线无法比拟的传输带宽,适合当前模拟制式的高质量视象业务市场和CATV网使用。

  电缆调制解调器又名线缆调制解调器,英文名称CableModem,它是近几年随着网络应用的扩大而发展起来的,主要用于有线电视网进行数据传输。

  CableModem与以往的Modem在原理上都是将数据进行调制后在Cable(电缆)的一个频率范围内传输,接收时进行解调,传输机理与普通Modem相同,不同之处在于它是通过有线电视CATV的某个传输频带进行调制解调的。而普通Modem的传输介质在用户与交换机之间是独立的,即用户独享通讯介质。CableModem属于共享介质系统,其它空闲频段仍然可用于有线电视信号的传输。

  CableModem彻底解决了由于声音图像的传输而引起的阻塞,其速率已达10Mbps以上,下行速率则更高。而传统的Modem虽然已经开发出了速率56Kbps的产品,但其理论传输极限为64Kbps,再想提高已不大可能。

  CableModem也是组建城域网的关键设备,混合光纤同轴网(HFC)主干线用光纤,光结点小区内用树枝型总线同轴电缆网连接用户,其传输频率可高达550/750MHz。在HFC网中传输数据就需要使用CableModem。

  我们可以看出CableModem是未来网络发展的必备之物,但是,目前尚无CableModem的国际标准,各厂家的产品的传输速率均不相同。因此,高速城域网宽带接入网的组建还有待于CableModem标准的出台。

  Cable Modem 技术原理:

  自从1993年12月,美国时代华纳公司在佛罗里达州奥兰多市的有线电视网上进行模拟和数字电视、数据的双向传输试验获得成功后,Cable技术就已经成为最被看好的接入技术。一方面它理论上可以提供极快的接入速度和相对低的接入费用,另一方面有线电视拥有庞大的用户群。

  有线电视公司一般从42MHZ~750MHZ之间电视频道中分离出一条6MHZ的信道用于下行传送数据。通常下行数据采用64QAM(正交调幅)调制方式,最高速率可达27Mbps,如果采用256QAM,最高速率可达36Mbps。上行数据一般通过5~42MHZ之间的一段频谱进行传送,为了有效抑制上行噪音积累,一般选用QPSK调制,QPSK比64QAM更适合噪音环境,但速率较低。上行速率最高可达10Mbps。

  Cable Modem 本身不单纯是调制解调器,它集MODEM、调谐器、加/解密设备、桥接、网络接口卡、SNMP代理和以太网集线器的功能于一身。它无须拨号上网,不占用电话线,可永久连接。服务商的设备同用户的Modem之间建立了一个VLAN(虚拟专网)连接,大多数的Modem提供一个标准的10BaseT以太网接口同用户的PC设备或局域网集线器相联。

关键字:调谐  加密  同轴  高速  环路  接入  光纤 引用地址:光通信与光纤传输网

上一篇:场效应晶体管的使用知识
下一篇:HDTV技术参数揭秘

推荐阅读最新更新时间:2024-05-03 19:18

利用STM32F唯一96bit序列号实现反拷贝加密的源代码公开
//--------------------------------------------------------------------------- #include #pragma argsused BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fwdreason, LPVOID lpvReserved) { return 1; } //--------------------------------------------------------------------------- //本示例代码用BCB5编写,很容易移植到VC++等编译环境 //导出函数mcu
[单片机]
福禄克光纤测试及OTDR原理
OTDR,中文名称是:光时域反射仪,是常用的光纤测试工具。这里的O代表 Optical,光学的意思,而TD代表Time Domain,即时域的意思,最后R代表Reflectometer, 即反射计的意思。我们知道,光纤多数是由高纯石英玻璃构成,而玻璃分子都是晶格结构,晶格结构实际上是不均匀的,当携带信号能量的光子遇到它们时会有少量发生方向的改变(散射)。另外,光纤中还存在着一些杂质、气泡与微弯结构,光子遇到它们时也会改变方向朝四面八方散射。其实,OTDR仪表正是利用这些特点,往光纤中发射非常短的光脉冲,然后使用光检测器件观测非常微弱的反射情况,通过分析后,可以识别损耗、反射及其他事件。 瑞利散射示意图 OTDR就像光纤界的雷达
[测试测量]
福禄克<font color='red'>光纤</font>测试及OTDR原理
光纤价格之殇:谁在围猎我们?
“光纤价格压得太低”、“一些厂商报价已经明显低于成本价”、“光纤 市场 已经处于微利状态,价格再降的话就要亏损了”……这是现在光纤生产厂商在一起抱怨最多的问题。 据预测,2012年光纤市场将继续供不应求的局面,在如此大好环境下,大多数光 通信 企业的感觉仍是如履薄冰。究竟是什么在困扰他们? 市场:2012供不应求 与厂商方面的忧心忡忡不相称的是,我国光纤市场明年仍将保持供不应求、快速发展的局面。 据飞象网记者了解,2012年我国国内光纤市场需求大概有近1.2亿芯公里,主要包括电信行业1.1亿芯公里,电力800万芯公里,广电800万芯公里。此外,国际市场还有2000万芯公里需求,再加上其他网络500
[网络通信]
极其适合极端苛刻环境使用的光纤
数字化正在进军隧道钻探和采矿行业。此类环境的恶劣性令使用要求异常严苛刻。长距离和高带宽要求光缆(FOC)成为工业以太网不可缺少的传输介质。浩亭目前已经为这些苛刻任务研发出理想的解决方案。 然而,由于光学接口对于污染极其敏感,因此采矿和隧道施工必须采用专门设计的解决方案。浩亭为这种极端条件下的高速数据传输提供了扩展光缆组件(Expanded Beam Cable Assembly)解决方案。由此,在机器和系统上实现HD-TV便不再是问题:安全封装在连接器内的光纤不会受到粉尘、水、或恶劣操作环境的影响。 与标准光纤布线相比,在此类环境中断开连接以及重新再连接将不再成为问题。甚至延长光纤连接长度也不再麻烦,其如同连接其他电缆一样简
[网络通信]
极其适合极端苛刻环境使用的<font color='red'>光纤</font>
高速公路自动驾驶测试该不该放开?
随着各地自动驾驶路测政策的出炉,自动驾驶车辆上路的消息频见媒体报端。不过,从各地政策来看,自动驾驶车辆只能在规定场景中进行测试,而被行业一直呼吁的高速公路自动驾驶测试在现实层面并没有被允许。“自动驾驶急需开放高速公路测试。”这是日前中国汽车工业协会常务副会长董扬提出的观点。就此,《中国汽车报》记者采访了多位行业专家,就现在应不应该放开高速公路测试,目前技术上是否达到高速公路测试的标准,现行法律不支持的条件下,高速公路测试能否推进等问题进行了探讨。      行业呼吁放开高速公路测试     董扬指出,自动驾驶L1、L2级研究开发急需的高速公路测试仍未放开。他说,虽然《智能网联汽车道路测试管理规范》(以下简称《管理规范》)没有禁止自
[嵌入式]
Thunderbolt超高速接口技术及其测量方法
1、Thunderbolt超高速接口简介 美国当地时间2011年2月24日,英特尔正式发布了已经宣传数月的英特尔实验室产品代号为“Light Peak”技术 ,并将其命名为“Thunderbolt(雷电)”。Thunderbolt技术由英特尔在2009年设计完成,并为其定名为“Light Peak”(是Thunderbolt的研发代号),Thunderbolt的研发初衷是为了替代并统一目前电脑上数量繁多性能参差不齐的扩展接口,比如 SCSI, SATA, USB, FireWire和 PCI Express,HDMI,DisplayPort等。 图1 ThunderBolt超高速接口 Thunderbolt 是苹果与英特尔
[测试测量]
Thunderbolt超<font color='red'>高速</font>接口技术及其测量方法
Adaptec by PMC 携业界首款配备加密技术的产品进军 HBA 市场
中国北京, 2013 年 2 月 21 日 —— 引领大数据连接、传送以及存储,提供创新半导体解决方案的 PMC ® 公司(纳斯达克代码: PMCS )今天宣布进一步扩展其存储产品线,在业界率先发布高性能、高密度且具有加密功能的半高 PCIe Gen3 主机总线适配器( HBA )产品系列。该产品系列每秒可执行超过 100 万次输入 / 输出操作( IOPS ),持续吞吐率达 6.6GB/ 秒。该产品还提供了 256 位 AES 加密功能和多达 16 个端口的选择。 Adaptec 7H 和 6H 系列 SAS/SATA HBA 产品为客户提供了高性能的连接选择,适用于硬盘( HDD )、固态硬盘( SSD )、可移动存储介质和
[嵌入式]
Adaptec by PMC 携业界首款配备<font color='red'>加密</font>技术的产品进军 HBA 市场
伍尔特电子扩展同轴连接器产品系列,加入超微型射频同轴连接器
伍尔特电子扩展同轴连接器产品系列,加入超微型射频同轴连接器 完美的天线连接 瓦尔登堡(德国),2022 年 03 月 30 日— WR-UMRF(超微型射频同轴连接器) 是伍尔特电子最新推出的尺寸极小的高频同轴连接器。通过将插头卡入插座,形成稳定的线到板直角连接,高度仅为 2.5 毫米。这种价格适中的连接技术特别适用于将天线连接到射频模块上。 特征阻抗为 50 欧姆,频率范围高达 6 GHz。 WR-UMRF 超薄连接解决方案的高度仅为 2.5 毫米,PCB 上也仅需 3.1 毫米 × 3.0 毫米的空间。在技术规格方面,WR-UMRF 与市面上的许多类似产品兼容。 伍尔特电子还提供各种组合的装配好的 UMRF
[物联网]
伍尔特电子扩展<font color='red'>同轴</font>连接器产品系列,加入超微型射频<font color='red'>同轴</font>连接器
小广播
最新家用电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 电视相关 白色家电 数字家庭 PC互联网 数码影像 维修拆解 综合资讯 其他技术 论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved