智能卡的边频攻击分析及安全防范措施

发布者:MysticDreamer最新更新时间:2011-02-23 来源: RFID中国网关键字:智能卡  安全 手机看文章 扫描二维码
随时随地手机看文章

在智能卡应用日益广泛的今天,智能卡应用系统的安全问题非常重要。通常认为智能卡具有较高的安全性[1],但随着一些专用攻击技术的出现和发展,智能卡也呈现出其安全漏洞,导致整个应用系统安全性降低。分析智能卡面临的安全攻击,研究相应的防御措施,对于保证整个智能卡应用系统的安全性有重大意义。下面分析目前主要的智能卡攻击技术之一——边频攻击技术,并有针对性地提出相应的安全设计策略。

1 智能卡简述

智能卡是将具有存储、加密及数据处理能力的集成电路芯片镶嵌于塑料基片上制成的卡片。智能卡的硬件主要包括微处理器和存储器两部分,逻辑结构如图1 所示。

智能卡内部的微处理器多采用8位字长的CPU(当然更高位的微处理器也正在开始应用)。微处理器的主要功能是接收外部设备发送的命令,对其进行分析后, 根据需要控制对存储器的访问。访问时,微处理器向存储器提供要访问的数据单元地址和必要的参数,存储器则根据地址将对应的数据传输给微处理器,最后由微处理器对这些数据进行处理操作。此外,智能卡进行的各种运算(如加密运算) 也是由微处理器完成的;而控制和实现上述过程的是智能卡的操作系统COS。卡内的存储器容量由只读存储器ROM、随机存储器RAM和电擦除可编程存储器 EEPROM组成。其中,ROM 中固化的是操作系统代码,其容量取决于所采用的微处理器;RAM 用于存放操作数据,容量通常不超过1 KB;EEPROM存储智能卡的各种信息,如加密数据和应用文件等,容量通常介于2 KB~32 KB之间(这部分存储资源可供用户开发利用)。

2 对智能卡安全的威胁

对智能卡的攻击可分为三种基本类型:

① 逻辑攻击——在软件的执行过程中插入窃听程序。智能卡及其COS中存在多种潜在的逻辑缺陷,诸如潜藏的命令、不良参数与缓冲器溢出、文件存取、恶意进程、通信协议、加密协议等。逻辑攻击者利用这些缺陷诱骗卡泄露机密数据或允许非期望的数据修改。

② 物理攻击——分析或更改智能卡硬件。用于实现物理攻击的手段和工具包括化学溶剂、蚀刻与着色材料、显微镜、亚微米探针台以及粒子束FIB等。

③ 边频攻击——利用物理量来分析和更改智能卡的行为。通过观察电路中的某些物理量,如能量消耗、电磁辐射、时间等的变化规律,来分析智能卡的加密数据;或通过干扰电路中的某些物理量,如电压、电磁辐射、温度、光和X射线、频率等,来操纵智能卡的行为。

智能卡攻击方法的有效性以攻击者所获得的效益高于其耗费的时间、精力、经费等作为标准。表1给出了上述三种攻击类型的情况对比。

物理攻击成本过高,耗时费力,较少被采用;逻辑攻击虽然投入较少,容易实施,但也容易防范,成功率较低。近年来,新兴的边频攻击技术因其较高的收益成本比而被广泛使用。尽管智能卡业界对于边频攻击的解决方案已有了越来越多的认识,然而许多智能卡对于这类攻击仍毫无免疫力。目前,应用最为广泛的边频分析和边频操纵技术包括:差分能量分析技术DPA(Differential Power Analysis)与能量短脉冲波形干扰(Power Glitching)技术。下面重点就这两种边频攻击的方法加以分析,并给出相应的安全策略。

3 差分能量分析

3.1 DPA攻击的分析

DPA(差分能量分析)攻击是通过用示波镜检测电子器件的能量消耗来获知其行为的。图2为某智能卡用DES算法加密时的能量追踪图。

能量消耗是不连续的并呈现出某种模式。众所周知,用DES算法对一个输入数据加密时需要执行16次循环,因此可以在能量轨迹的16次重复模式中识别出这些循环。攻击者只需知道算法的明文(输入)或密文(输出),通过分析和比较一系列的能量轨迹就可重现加密密钥。DPA攻击的基础是假设被处理的数据与能量消耗之间存在某种联系,换句话说,假设处理0比1所用的能量要少(反之亦然),那么对两个不同数据执行同一算法的两个能量轨迹会由于输入数据的不同而产生微小的差别。用计算机严格按时钟计算两条轨迹的差得到差分轨迹,差分轨迹中出现峰值的时刻即是输入数据产生差别的时钟周期。如此检查加密算法的所有输入以及每一对0和1产生的差分轨迹,就可以识别出它们出现在程序代码中的确切时间,从而获取加密密钥。

DPA使得加密算法的内部处理过程可以被研究,这一危险性对智能卡安全提出了更高的要求。加密算法必须使用足够长度的全密钥,以保证探索密钥的过程因过于耗时而不可行。一个完整的算法通常在加密过程中分解成许多小步骤以使处理器可以实现。这些小步骤往往不使用全密钥而是用其中的一部分。DPA可以获取这些小步骤的输出并探索出这些较短的密钥值,因此,从理论上说,所有加密算法都可用DPA破解。虽然这种攻击方法的开发十分复杂,然而其应用却十分简单且只需很小的投资,所需的设备仅限于1台PC及中等精度的示波镜,因此解决DPA问题成为智能卡制造商最急需面对的问题之一。

3.2 DPA攻击的安全策略

应对DPA攻击的安全策略基本分为三个层面:硬件、软件和应用层面。

(1) 硬件层面的反措施

① 采用平衡电路降低信号能量,以及设置金属防护以抑制电磁发射。

② 执行并行随机处理来加大幅值噪声水平。例如,内部编程电压产生电路可用作并行噪声发生器。

③ 随时处理中断引入的时间噪声和不同的时钟频率。对差分轨迹进行计算机处理的基础是轨迹可排列。在加入轨迹之前处理器的工作步骤应是同步的。时间噪声会防止或至少妨碍轨迹很好地排列。

硬件反措施的好处在智能卡对于侧路攻击的敏感性比较少地依赖于软件的变化,但其弱点在于只能降低智能卡对于侧路攻击的敏感性而无法完全消除它。事实上,硬件防范措施只是将信号降低到噪声水平从而使攻击变得困难。

(2) 软件层面的反措施

① 采用随机处理顺序来减少相关的信号。例如,算法中的平行置换(诸如DES中的S盒)可依随机的顺序来完成,置换的数目重新排序,则可将一次置换产生的信号分解。

② 利用随机延时和改变路径来增加计时噪声。计时噪声会妨碍轨迹的排列,并降低差分轨迹的质量。

③ 消除密钥值及中间媒介值的时间依存性。当处理过程取决于密钥值时,直接用肉眼观察轨迹就可实现简单的能量分析;而在时间上连续的密钥处理过程则可防止这种易行的攻击。

④ 用随机值来隐蔽中间媒介值。能量的泄露取决于一个数据中的位数。如果在实际数据上加上随机数据,处理完之后再减去,那么传递的路径将不会泄露有用的信息。不过,这种隐蔽将会导致传递函数的非线性并产生错误的结果。因此,这些函数需要仔细地重新设计,以补偿由随机数据引起的背离。

理论上来说,软件对策完美地解决了DPA攻击的问题。然而这种方法必须针对某种算法定制且其设计相当困难,因而非常昂贵且难以维持。

(3) 应用层面的反措施

① 重设计数器,用于限制攻击者试探的次数。连续三次PIN校验失败后自锁是防范差分能量分析的有效方法。

② 限制加密算法中输入输出的控制和可见度。如果只能选择部分输入,或只有部分算法的结果返回,攻击者就无法完成差分能量分析。

以上是防范DPA攻击的基本方法,其缺点是对可靠性的负面影响以及需要改变已有的协议。

4 能量短脉冲干扰

4.1 能量短脉冲干扰攻击的分析

微处理器要求在稳定的电压下工作,能量供应的中断就好像突然冲击程序运行或复位电路。然而,一个短而巧妙的脉冲可以引起单步的程序错误而微处理器仍能继续执行程序。例如, CPU读取存储单元的内容,晶体管用一个阈值来检测存储单元的值,以确定所读的是逻辑“0”或“1”。突然出现的能量短脉冲对存储值和逻辑值都会产生影响。不同的内部容量会使存储值受到不同的影响,有可能会使真实的值被歪曲。如图3所示,与逻辑“0”对应的低电平在正常的操作状态下可能低于阈值电平,然而由于短脉冲的能量下压可能导致其高于阈值电平。

许多加密算法都易受这一类故障注入的影响。采用差分故障分析DFA(Differential Fault Analysis )技术将正确的与错误的密码编码相比较,从而析出秘藏的密钥。有些算法仅当一个精确的中间值被袭击时才能被攻击,而其他算法要求不那么苛刻,可以在处理过程的任何位置被攻击。通常DFA要求有可能对同一个明文加密2次,产生一个正确的和一个错误的密文。

故障注入的第二种应用发生于安全处理过程关键的决定时刻。若某一应用执行一个诸如PIN校验的安全检查,那么在器件决定是继续还是中断处理的那一刻进行攻击最为有效。攻击者有可能将 PIN校验失败转为成功以欺骗处理器。更为严格的一种方式是,在处理器正要将校验失败写入存储器时完全关闭电源,从而避免PIN校验失败计数器溢出。

短脉冲干扰的第三种应用以操纵通信活动为目标。通信协议的设计是为了从智能卡存储器中读取几个字节并传送到终端。如果故障注入成功地攻击了发送限制计数器,就可能导致整个存储器内容输出到串行接口。

4.2 能量短脉冲干扰的安全策略

能量短脉冲干扰以及其他侧路操纵技术都企图改变智能卡的环境。通常防范这类攻击的策略是严格的电压、频率和温度检测。然而使用精确的传感器也会影响可靠性,并在某些终端中导致潜在的故障。不仅如此,传感器也不可能检测到所有的诱导信号。电路对于通过感应方式注入的信号或精心调整的能量短脉冲不可能完全免疫。重要的是,要运用软件或应用的防范措施来侦查和恢复故障注入。

就软件防范措施而言,可以通过检查关键的程序流向以及加密运算结果来实现故障监测。求两次运算结果并加以比较是检测结果有效性的方法之一,但若两次都注入同样错误的则无法检测出来;因此最佳的方法是由结果反向运算求出其输入,并与原来的输入进行比较。反向运算通常是不同的,并且反向操纵会更为困难。

5 结语

智能卡应用系统是一个安全环境很复杂的系统。本文为分析这个系统面临的安全攻击提供了一个思路,为系统的安全设计提供了依据。下一步工作是量化各安全设计策略,在降低安全威胁与增加安全成本之间寻找最佳平衡点的方法。

关键字:智能卡  安全 引用地址:智能卡的边频攻击分析及安全防范措施

上一篇:基于ARM的双频RFID读写设计
下一篇:“2010 RFID世界年度最有影响力评选活动”投票接近尾声

推荐阅读最新更新时间:2024-05-07 16:17

全方位的安全感:大陆集团展示360度覆盖车身周围环境的新长距雷达传感器
科技公司大陆集团拥有 20 多年制造雷达传感器的成功经验,至今已向全球市场推出了 1 亿件雷达传感器。大陆集团的雷达传感器技术仍在不断发展,并将在上海国际汽车展中推出第六代长距雷达和环绕式雷达。这些雷达计划在 2023 年开始投产,现已收到首批客户订单。这两款雷达传感器共享一个软件和硬件平台,从而减少了运行的复杂性和成本,同时也可以节省客户方面的测试和开发投入。与第五代雷达相比,这些新雷达的性能大幅提高。这些雷达是一种可扩展的解决方案,覆盖了从欧洲 NCAP 要求的入门级车型功能到高端车型使用的高级自动功能(例如自动变道)。这些传感器还可以覆盖欧盟一般安全法规(GSR)要求的功能。此外,这些雷达还可以作为智能雷达,在传感器中处理数
[汽车电子]
全方位的<font color='red'>安全</font>感:大陆集团展示360度覆盖车身周围环境的新长距雷达传感器
新能源电池系统热安全设计
本文主要从热安全设计的重要性、市场热安全问题、 电池 系统热安全设计解决方案、热失控预警策略等四个方面来分析,以期望在 动力电池 热安全设计中采取相应的防护措施时起到参考作用。 热安全设计的重要性 随着电动汽车的存量增加,电动汽车安全事故明显增多,成为关注热点;根据不完全统计,2020年全年仅公开报道的电动汽车起火事故就有124起,事故数量明显多于2019年。这些发生的安全事故中,动力电池热失控引起的事故占比最大。动力电池热失控安全技术研究引起国内外学者广泛重视。 动力电池的工作过程是一个复杂的电化学反应过程,在高温、高压、高电流、大电流等复杂的环境下,会出现电化学化学反应不完全,造成局部过热而引发热失控。电池发生热失
[汽车电子]
新能源电池系统热<font color='red'>安全</font>设计
沃尔沃S90主动安全系统:保护您的旅途安全
随着《机动车辆间接视野装置性能和安装要求》正式发布,不仅进一步完善了传统物理后视镜的技术要求,从2023年7月1日开始还允许车主自行安装电子后视镜,以应对特殊天气对交通安全造成的影响,甚至允许使用电子后视镜取代传统后视镜。 这意味着加装电子后视镜的行为已经“合法化”,可以预见电子后视镜即将迅速出现在后续的新车上。 当然了,想要出行安全,只是一个电子后视镜还远远不够!毕竟汽车安全的构成是非常复杂的。 都说专业的事儿要交给专业的人来做,那安全这一块,我觉得大可以放心交给沃尔沃!毕竟从安全带、笼式安全车身到首款内置增高坐垫、侧面安全气囊等等,都是沃尔沃发明的,真正对汽车安全做出了不可磨灭的贡献。 无论是翻看各大官方
[汽车电子]
沃尔沃S90主动<font color='red'>安全</font>系统:保护您的旅途<font color='red'>安全</font>
Google,Silicon Labs等公司加入ioXt安全联盟
IoT安全全球标准ioXt联盟宣布,包括Google,T-Mobile,Silicon Labs等在内的主要技术公司和制造商已通过ioXt Alliance认证计划,对各种设备进行了认证。ioXt联盟认证的安全设备包括手机,智能家居,照明控制,IoT蓝牙,智能零售,便携式医疗,宠物追踪器,路由器和汽车技术。 ioXt联盟以技术界的知名人士为专家顾问,并且是唯一能够满足对物联网设备认证快速增长的需求的组织,该认证可满足每个产品类别的安全性要求。随着主要制造商和技术颠覆者的加入,成员数不断增加以及四个授权实验室作为独家测试提供商,ioXt联盟继续为定义行业领先、且大规模测试的全球安全标准铺平道路。 ioXt Alliance首
[物联网]
安德森预言2015科技趋势:网络安全成头等大事
    导语:《财富》杂志网站日前刊文,总结了硅谷风投美国风险投资公司Andreessen Horowitz联合创始人马克·安德森(Marc Andreessen)在旧金山一次聚会上对2015年科技趋势发表的预言。 以下为财富中文网翻译的文章全文: 没人能像马克?安德森那样精准地洞见未来。他对经济与科技交叉领域的预言一直受到硅谷密切关注。他既能放眼全球,预判即将横空出世的“下一个大事件”和热点地区,又能够洞察哪些热门产品和国家行将过气。由安德森领衔的“战略新闻服务”公司(Strategic News Service),是一家专为行业领袖和风险投资家服务的通讯出版商。该公司宣称拥有众多大牌读者,比如戴尔公司首席执行官迈克尔?戴
[手机便携]
美机构测试发现:特斯拉自动驾驶系统存安全隐患
外媒称,特斯拉的车辆在得克萨斯州发生导致人员死亡的事故后,两位美国参议员提出担忧,称该公司的车辆安全隐患正在形成一种模式。 据美国《华尔街日报》网站4月22日报道,在22日发给美国最高汽车安全监管机构的一封信中,康涅狄格州参议员理查德·布卢门撒尔和马萨诸塞州参议员埃德·马基这两位议员,敦促该机构出台相关指导意见来改善特斯拉的自动驾驶系统等先进驾驶辅助系统。 报道称,美国国家公路交通安全管理局已对17日发生的车祸展开调查,该机构针对涉特斯拉车祸展开的调查已有20多项。该机构曾表示,这些调查大多与车辆的先进驾驶辅助功能有关。 这两位民主党参议员在信中写道:“我们担心涉及这些车辆的安全隐患正在形成一种模式,这一点非常令人担忧
[汽车电子]
美机构测试发现:特斯拉自动驾驶系统存<font color='red'>安全</font>隐患
杜绝无线泄密 WLAN IPS全面管控安全风险
无线网络安全存隐患 在城市里,人们随时打开无线终端,总会发现周围或多或少存在着各种类型的无线网络,为人们接入网络提供了更多便利选择。然而有一利必有一弊,WLAN无线网络也不例外,其大范围应用所带来的信息泄露风险不容忽视。 首先,无处不在的无线网络打破了我们对传统的物理网络边界的定义,将网络延伸到隔壁甚至更远的地方,相对于有线网络,网络嗅探、攻击似乎变得更加容易。 其次,由于WLAN自身的协议机制在设计之初并未考虑过多的安全性,使其更容易受到攻击,降低了黑客入侵的门槛。 第三,由于WLAN工作在ISM开放频段,并且各种WLAN设备随处可得,人们可以轻易的搭建一个无线网络,甚至是一个可远程传输(数公里至数十
[网络通信]
森萨塔科技推出全新蓝牙低能耗胎压监测系统 提高车辆安全
6月29日,工业技术公司和传感器丰富的解决方案供应商森萨塔科技(Sensata Technologies)宣布为汽车OEM开发出全新蓝牙®低能耗(BLE)胎压监测系统(TPMS),以助力提高汽车的安全性和性能。 图片来源:森萨塔 虽然BLE在扬声器和耳机等消费类应用中很常见,但在汽车TPMS领域相对较新。并且BLE还采用支持其功能的较新的汽车系统架构。 森萨塔全新BLE TPMS利用其经过现场验证的轮胎压力监测传感器,将超高频(UHF)无线电替换为BLE无线电,以实现双向通信。这些新的BLE TPMS解决方案提供夹入式和卡入式两种配置,经过优化以延长电池寿命,并提供与森萨塔现有UHF TPMS解决方案相同的压力、
[汽车电子]
森萨塔科技推出全新蓝牙低能耗胎压监测系统 提高车辆<font color='red'>安全</font>
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved