基于射频传输的无线轮胎压力监测系统

发布者:自在逍遥最新更新时间:2011-04-03 来源: RFID世界网 关键字:射频传输  轮胎压力监测 手机看文章 扫描二维码
随时随地手机看文章

  随着我国高速公路网的蓬勃兴起和交通的日趋发达,车辆行驶速度也不断攀升,交通隐患的防范迫在眉睫。因轮胎漏气和爆破等造成的交通事故很多是由轮胎工作温度过高或不合理轮胎压力引起的,因此,研究汽车轮胎压力监测系统(TPMS)对现代汽车行驶经济性、安全性和操纵稳定性具有尤为重要的现实意义。

  TPMS主要用于汽车行驶时实时监测轮胎压力。目前TPMS主要分为间接式和直接式两种类型。间接式,通过汽车ABS(防抱死制动系统)的轮速传感器及轮胎的力学模型,间接求出轮胎压力,以达到监视轮胎压力的目的。直接式,利用安装在每一个轮辋上的以锂离子电池为电源的压力传感器直接测量轮胎压力,并通过无线调制发射到安装在驾驶台的监视器上,监视器随时显示各个轮胎压力,驾驶者可以直观地了解各个轮胎压力状况,当轮胎压力太低或有漏气时,系统将会自动报警,以确保行车安全。

  下面对直接式基于射频传输的无线轮胎压力监测系统进行介绍。

  1 结构原理

  基于射频传输的TPMS由发射模块、接收显示模块和低频唤醒模块组成,3个模块之间均通过电磁波无线传输信息。结构原理如图1所示。


图1 TPMS结构原理

  发射模块安装于轮辋上,通过传感器感受到汽车启动加速度激活模块工作,发送射频数据信号。接收显示模块放置于驾驶台的监视器上,能接收并显示发射模块发送的轮胎压力值,驾驶者能实时监测轮胎压力变化。低频唤醒模块为手持式,通过发送射频配置信号实现系统位置的自学习,使发射模块与其安装的轮胎位置一一对应。发射模块的核心元器件为压力传感器。本工作设计的TPMS传感器选用Infineon公司的SP30型,该传感器集成了单片机、压力传感器、温度传感器和加速度传感器等,能实现对整个发射模块的控制。SP30型传感器能实现对轮胎压力、温度和加速度的快速测量,并能根据加速度判断汽车是否在运行,可以软件控制发射模块启动,大大延长了电池使用寿命,且自带单片机,能节约硬件成本,提高系统可靠性。

  接收显示模块接收芯片选用Freescale公司的MC33594型,该芯片接收灵敏度高达一105dBm,能有效接收发射模块发送的射频帧,同时该芯片可将接收的数字信号进行曼彻斯特码解码,大大减小单片机的工作量,降低接收误码率。
 
  2 TPMS设计中的关键问题

  2.1 发射天线

  发射天线是TPMS设计首要考虑的问题,其直接决定了发射效果和数据传输的准确性、可靠性和稳定性。考虑到发射模块安装在轮辋的气门嘴处,轮胎高速旋转给发射模块以极大的离心力,因此内置式天线比外置式天线更安全可靠,不易变形扭曲。结合外形结构,本设计的TPMS采用螺旋天线。

  螺旋天线是行波天线,具有宽频带和圆极化特性,广泛应用于米波和分米波波段[4]。波长( )为


  式中,C为电磁波传播的速度,3×10。m ·S_。;f 为射频频率,433.92 MHz。

  射频波长属于分米波波段,可应用螺旋天线,本工作设计内置式螺旋天线如图2所示。螺旋天线的辐射特性取决于螺旋直径(D)与波长之比( )。由于设计的 为0.033,小于0.18,因此,天线在垂直于螺旋轴线的平面内有最大辐射,且在该平面内的方向图为一个圆,在含轴平面内的方向图呈“8”字形。此天线具有如下主要特点:沿轴线有最大辐射,辐射场圆极化,沿螺旋导线传播的是行波,输入阻抗近似为纯阻,频带较宽(带宽可达1.7~2.O)等。


图2 内置式螺旋天线

  2.2 低频配置

  发射模块安装到轮胎内后,需对其进行定位配置,以使接收显示模块收到射频帧后能准确判断出是哪个模块发射的,本工作设计的TPMS采用手持式低频唤醒模块对发射模块进行配置,低频唤醒模块利用低频发射电路发射125 kHz载频与发射模块进行数据通讯,实现发射模块的唤醒与ID配置初始化,接收显示模块通过读取数据中的ID号辨别发射模块的位置。发射模块配置帧的数据格式如图3所示,一次发射3帧数据,以便接收显示模块能至少收到一帧数据。
图3 发射模块配置帧的数据格式

  2.3 人声语音报警

  目前常用的TPMS报警系统一般采用显示屏和蜂鸣器结合的方式,当有报警信息时,显示器显示报警类型,蜂鸣器呜叫以提醒驾驶者。此方法存在很多不足:显示器报警不易引起注意;蜂呜器鸣叫声音刺耳,容易引起驾驶者惊慌;蜂鸣器呜叫报警不直观;汽车中还有一些使用了蜂鸣器的装置,容易引起混淆等。本工作采用显示器和人声语音结合的报警方式,通过悦耳的人声语音提示驾驶者轮胎压力高、压力低、温度高或漏气等,并能播报具体轮胎位置,驾驶者可不必查看显示屏即可明确知道哪个轮胎发生何种异常,若驾驶者想更详细了解此异常情况,可查看显示屏,显示屏上可显示实时的轮胎压力和温度,以使驾驶者准确了解异常程度。

  人声语音报警讯号处理过程如图4所示。将录制的人声语音文件(.wav)经GoldWave软件处理后再录入到语音芯片中,即可在有报警信息时产生人声语音提示。


图4 人声语音报警讯号处理过程

   3 结语

  本工作设计的基于射频传输的无线轮胎压力监测预警系统通过轮辋上安装的发射模块将轮胎压力和温度信息传送给驾驶台的接收显示模块并显示,驾驶员可以随时观察轮胎的压力和温度情况,实现对轮胎压力和温度的实时监测,预防事故发生,其人声语音报警,比单纯视觉报警更有效。发射天线采用内置式螺旋天线,在保证发射效果的同时比外置天线更方便安装,轮胎高速旋转时也不易被破坏,可延长发射模块的使用寿命。采用手持式低频唤醒模块进行初始化,比现有的其它初始化方式更方便,
也更利于流水线作业。

关键字:射频传输  轮胎压力监测 引用地址:基于射频传输的无线轮胎压力监测系统

上一篇:基于RFID技术的奶牛疫病监管系统的设计与实现
下一篇:无线射频识别技术在规模化奶牛场中的应用

推荐阅读最新更新时间:2024-05-07 16:22

用于轮胎压力监测系统的技术与芯片应用特征
1、前言    轮胎压力监测系统(TPMS -TIre pressure monitoring system)对于提高汽车安全性有举足轻重的影响,当今世界己有不少国家高速公路安全协会因此立法强制实施TPMS。而低功耗、在恶劣环境下高度运行的可靠性、较小的压力传感器误差容限,以及更长的工作寿命等是TPMS的主要要求,于是方案的设计和芯片的选择也围绕这个要求进行。    1.1目前TPMS主要有三种实现方式。   直接TPMS系统、间接TPMS系统和正在推出的混合TPMS。但是,间接TPMS有一定的局限性,采用间接方法进行检测在很大程度上依赖于轮胎和负载因子。直接TPMS采用固定在每个车轮中的压力传感器直接测量每个轮胎的气压。
[汽车电子]
用于<font color='red'>轮胎</font><font color='red'>压力</font><font color='red'>监测</font>系统的技术与芯片应用特征
射频技术在汽车轮胎压力监测中的应用
很快就会要求在绝大多数车辆上安装轮胎压力监测系统(TPMS)。飞思卡尔半导体公司的MPXY8300就是为满足这些即将实行的标准而设计的,MPXY8300可以安装在每个轮胎上(见图1)。 芯片和电池一般安装在阀门柄处。用一个中央控制单元接收来自这些远程传感器的信息,并实时提供给司机。 如果司机使用TPMS,使轮胎压力一直保持在技术参数规定值之内,就有助于延长轮胎使用寿命,并且提高燃料效率。很少有人定期检查轮胎压力,而在整个使用寿命期内,轮胎压力可能差异很大。现在可以使用MPX8300完成这项工作了。 MPXY8300采用飞思卡尔的系统级封装(SiP)工艺,包括一个8位微控制器,一个SmartMOS射频发射
[汽车电子]
大陆集团聚焦开发直接式轮胎压力监测系统
图1:大陆集团将直接式轮胎压力监测系统作为研究焦点   日前,大陆集团表示将直接式轮胎压力监测系统作为研发重点,并强力推荐全球汽车制造商为新车型使用该产品,实时监控车辆轮胎充气状态,从而有利于优化行驶并降低二氧化碳排放。   直接式轮胎压力监测系统在每个轮胎中置入传感器,可在任意时刻、任何路况和所有行驶速度条件下快速、直接而准确地收集空气压强和温度信息。关于直接式轮胎压力监测系统(Direct Tire Pressure Monitoring System)的整体优势,根据大陆集团内饰业务董事会成员Helmut Matschi等人的说法,直接监控轮胎压强的功能具有多重益处,在即时功能上具有速度和精确度方面的优势,
[汽车电子]
大陆集团聚焦开发直接式<font color='red'>轮胎</font><font color='red'>压力</font><font color='red'>监测</font>系统
汽车轮胎压力监测系统应用设计
引 言 随着汽车越来越多地进入家庭,汽车行驶的安全问题也成为人们越来越关注的话题。汽车 轮胎 压力监测系统(TPMS)由此应运而生,它是继ABS、安全气囊后第3个重要的汽车安全电子产品,主要用于在汽车行驶过程中对轮胎气压、温度进行实时自动监测,并对出现的异常情况进行实时报警,是驾车者和乘车人员的生命安全保障预警系统。 目前TPMS的实现形式主要有两种:基于车轮转速的TPMS(Wheel-Speed Based TPMS),又叫“间接式TPMS”;基于压力传感器的TPMS(Pressure-SensorBased TPMS),又叫直接式TPMS”。间接式TPMS是通过汽车ABS系统的轮速传感器比较车轮之间的转速差别,来确定轮
[传感器]
汽车<font color='red'>轮胎</font><font color='red'>压力</font><font color='red'>监测</font>系统应用设计
基于骁龙X75 5G调制解调器及射频系统,高通实现Sub-6GHz频段全球最快的5G下行传输速度
基于骁龙X75 5G调制解调器及射频系统,高通实现Sub-6GHz频段全球最快的5G下行传输速度 要点: • 骁龙X75实现高达7.5Gbps的下行传输速度,创造Sub-6GHz频段全球最快的5G传输速度纪录。 • 作为高通第六代5G调制解调器及射频系统,骁龙X75支持包括基于TDD频段的四载波聚合(CA)以及1024QAM在内的先进5G特性,能够在5G独立组网(SA)网络配置下实现Sub-6GHz频段极高的下行传输速度。 2023年8月9日,圣迭戈—— 高通技术公司今日宣布,骁龙®X75 5G调制解调器及射频系统持续突破5G性能边界,在Sub-6GHz频段实现了高达7.5Gbps的下行传输速度,创造了全
[网络通信]
基于骁龙X75 5G调制解调器及<font color='red'>射频</font>系统,高通实现Sub-6GHz频段全球最快的5G下行<font color='red'>传输</font>速度
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved