随着计算机技术的迅速发展,电子信息技术越来越快地普及到各行各业的应用中去。传统的物流信息采集工作方式是通过工作人员将票物进行核对,然后将票上的数据输入到计算机中。这一过程费时费力,并且可能由于各种人为过失造成各种各样错误数据的存在,影响所采集信息的可靠性。而自动识别技术利用计算机进行自动识别,增加了输入的灵活性与准确性,使人们摆脱繁杂的统计识别工作,并且大大提高了物流信息采集的工作效率。目前,由沃尔玛、麦德隆等大超市一手推动的RFID应用,为零售业带来包括降低劳动力成本、商品的可视度提高,降低因商品断货造成的损失,减少商品偷窃现象等好处。其可应用的过程包括:商品的销售数据实时统计,补货,防盗等。本文利用RFID技术,用FPGA芯片与NRF905搭建了无线通信系统,成功的实现了无线收发数据。
1 系统设计
1.1 RFID简介
RFID(Radio Frequency Identification,射频识别技术)是利用无线电波对记录媒体进行读/写。射频识别的距离可达几十厘米至几米,且根据读/写的方式,可以输入数千字节的信息,同时,还具有极高的保密性。射频识别技术适用的领域:物料跟踪、运载工具和货架识别等要求非接触数据采集和交换的场合,要求频繁改变数据内容的场合尤为适用。如香港的车辆自动识别系统驾易通,采用的主要技术就是射频技术。射频技术在其他物品的识别自动化管理方面也得到了较广泛的应用。
如图1所示即为本无线系统的整个构架,由控制模块,SPI模块以及天线模块构成。其中对SPI模块的配置由控制模块通过Wishbone总线来完成,并且对天线模块的配置,模式转换,收发数据等操作均由控制模块通过SPI总线来完成。下面将就各个部分进行说明。
1.2 天线模块(NRF905收发模块)
1.2.1 NRF905介绍
NRF905是挪威Nordic公司推出的单片射频发射器芯片,工作电压为1.9~3.6 V,32引脚QFN封装,工作于433/868/915MHz三个ISM频道。可以自动完成处理字头和CRC(循环冗余码校验)的工作,可由片内硬件自动完成曼彻斯特编码/解码,使用SPI接口与微控制器通信,配置方便,功耗低,以-10 dBm的输出功率发射时电流只有11 mA,在接收模式时电流为12.5 mA。
NRF905有ShockBurst接收与ShockBurst发送两种工作模式;掉电和SPI编程与Standby和SPI编程两种节电模式。其ShoekBurst工作模式的特点是自动产生前导码和CRC,可以通过SPI接口进行编程配置。NRF905的工作模式由对TRX_CE,TX_EN,PWR_UP的设置来设置,见表1。
1.2.2 NRF905配置与工作过程
nRF905的所有配置都通过SPI接口进行。SPI接口由5个寄存器组成,一条SPI指令用来决定进行什么操作。SPI接口只有在掉电模式和Standby"模式是激活的。
其中SPI接口的5个寄存器分别为:
(1)状态寄存器:寄存器包含数据就绪DR和地址匹配AM状态。
(2)RF配置寄存器:寄存器包含收发器的频率、输出功率等配置信息。
(3)发送地址:寄存器包含目标器件地址,字节长度由配置寄存器设置。
(4)发送有效数据:寄存器包含发送的有效Shock Burst数据包数据,字节长度由配置寄存器设置。
(5)接收有效数据:寄存器包含接收到的有效ShockBurst数据包数据,字节长度由配置寄存器设置。在寄存器中的有效数据由数据准备就绪DR指示。
ShoekBurst技术使nRF905能够提供高速的数据传输,而不需要高速控制器来进行数据处理或时钟覆盖。通过将与RF协议有关的高速信号处理放到芯片内,nRF905提供给应用控制器一个SPI接口,速率由微控制器自己设定的接口速度决定。nRF905通过ShockBurst工作模式在RF以最大速率进行连接时降低数字应用部分的速度来降低在应用中的平均电流消耗。在ShockBurst RX(接收)模式中,地址匹配AM和数据准备就绪DR信号通知控制器一个有效的地址和数据包已经各自接收完成。在ShockBurst TX(发送)模式中,nRF905自动产生前导码和CRC校验码,数据准备就绪DR信号通知控制器数据传输已经完成。
1.3 SPI模块
1.3.1 SPI总线介绍
SPI(Serial Parallel Bus)总线是Motorola公司提出的一个同步串行外设接口,容许CPU与各种外围接口器件,以串行方式进行通信。它使用4条线:串行时钟线(SCK)、主机输入/从机输出线(MISO)、主机输出/从机输入线(MOSI)、低电平有效的使能信号线(SS)。这样,仅需3~4根数据线和控制线即可扩展具有SPI接口的各种I/0器件。
SPI总线模式的数据是以字节为单位进行传输的(一次传输可以传多个字节),每字节为8位,每个命令或者数据块都是字节对齐的(8个时钟的整数倍)。数据按位传输,高位在前,地位在后,为全双工通信,数据传输速度总体来说比I2C总线要快,速度可达到每秒几兆比特。SPI接口是以主从方式工作的,这种模式通常有一个主器件和一个或多个从器件。在本文设计的无线通信系统中,由FPGA实现的SPI总线接口模块为主机,NRF905的SPI模块为从机。
SPI时序模式的选择:
SPI接口有4种不同的数据传输时序,取CPOL和CPHL这两位的组合。CPOL是用来决定SCK时钟信号空闲时的电平;CPOL=O,空闲电平为低电平,CPOL=1时,空闲电平为高电平。CPHA是用来决定采样时刻的,CPHA=0,在每个周期的第一个时钟沿采样;CPHA=1,在每个周期的第二个时钟沿采样。
图2为NRF905的SPI接口的时序图,由此本文设计的SPI工作模式是在CPOL=O,CPHA=O这种时序下。
1.3.2 SPI硬件设计
图3是本文无线通信系统中SPI模块的结构图,该系统中的SPI主要由时钟生成模块,SPI寄存器组,SPI功能配置的模块组成,并且通过Wishbone总线与控制器相连,具体设计如下:
时钟生成模块:由于SPI模块是基于FPGA来实现的,而FPGA外部提供的时钟较快(50 MHz或100 MHz),不适合与NRF905的SPI接口进行通信(1 Hz~10 MHz),所以需要分频来使时钟慢下来。但是至于几分频是由SPI功能配置模块来完成的。其次由于SPI协议指出数据可在上升沿或下降沿触发,所以还需要对时钟的上升沿或下降沿进行鉴别(也称抓沿程序),这个功能也由这个模块完成。
关键字:FPGA RFID 无线通信系统
引用地址:基于FPGA的RFID无线通信系统的实现
1 系统设计
1.1 RFID简介
RFID(Radio Frequency Identification,射频识别技术)是利用无线电波对记录媒体进行读/写。射频识别的距离可达几十厘米至几米,且根据读/写的方式,可以输入数千字节的信息,同时,还具有极高的保密性。射频识别技术适用的领域:物料跟踪、运载工具和货架识别等要求非接触数据采集和交换的场合,要求频繁改变数据内容的场合尤为适用。如香港的车辆自动识别系统驾易通,采用的主要技术就是射频技术。射频技术在其他物品的识别自动化管理方面也得到了较广泛的应用。
如图1所示即为本无线系统的整个构架,由控制模块,SPI模块以及天线模块构成。其中对SPI模块的配置由控制模块通过Wishbone总线来完成,并且对天线模块的配置,模式转换,收发数据等操作均由控制模块通过SPI总线来完成。下面将就各个部分进行说明。
1.2 天线模块(NRF905收发模块)
1.2.1 NRF905介绍
NRF905是挪威Nordic公司推出的单片射频发射器芯片,工作电压为1.9~3.6 V,32引脚QFN封装,工作于433/868/915MHz三个ISM频道。可以自动完成处理字头和CRC(循环冗余码校验)的工作,可由片内硬件自动完成曼彻斯特编码/解码,使用SPI接口与微控制器通信,配置方便,功耗低,以-10 dBm的输出功率发射时电流只有11 mA,在接收模式时电流为12.5 mA。
NRF905有ShockBurst接收与ShockBurst发送两种工作模式;掉电和SPI编程与Standby和SPI编程两种节电模式。其ShoekBurst工作模式的特点是自动产生前导码和CRC,可以通过SPI接口进行编程配置。NRF905的工作模式由对TRX_CE,TX_EN,PWR_UP的设置来设置,见表1。
1.2.2 NRF905配置与工作过程
nRF905的所有配置都通过SPI接口进行。SPI接口由5个寄存器组成,一条SPI指令用来决定进行什么操作。SPI接口只有在掉电模式和Standby"模式是激活的。
其中SPI接口的5个寄存器分别为:
(1)状态寄存器:寄存器包含数据就绪DR和地址匹配AM状态。
(2)RF配置寄存器:寄存器包含收发器的频率、输出功率等配置信息。
(3)发送地址:寄存器包含目标器件地址,字节长度由配置寄存器设置。
(4)发送有效数据:寄存器包含发送的有效Shock Burst数据包数据,字节长度由配置寄存器设置。
(5)接收有效数据:寄存器包含接收到的有效ShockBurst数据包数据,字节长度由配置寄存器设置。在寄存器中的有效数据由数据准备就绪DR指示。
ShoekBurst技术使nRF905能够提供高速的数据传输,而不需要高速控制器来进行数据处理或时钟覆盖。通过将与RF协议有关的高速信号处理放到芯片内,nRF905提供给应用控制器一个SPI接口,速率由微控制器自己设定的接口速度决定。nRF905通过ShockBurst工作模式在RF以最大速率进行连接时降低数字应用部分的速度来降低在应用中的平均电流消耗。在ShockBurst RX(接收)模式中,地址匹配AM和数据准备就绪DR信号通知控制器一个有效的地址和数据包已经各自接收完成。在ShockBurst TX(发送)模式中,nRF905自动产生前导码和CRC校验码,数据准备就绪DR信号通知控制器数据传输已经完成。
1.3 SPI模块
1.3.1 SPI总线介绍
SPI(Serial Parallel Bus)总线是Motorola公司提出的一个同步串行外设接口,容许CPU与各种外围接口器件,以串行方式进行通信。它使用4条线:串行时钟线(SCK)、主机输入/从机输出线(MISO)、主机输出/从机输入线(MOSI)、低电平有效的使能信号线(SS)。这样,仅需3~4根数据线和控制线即可扩展具有SPI接口的各种I/0器件。
SPI总线模式的数据是以字节为单位进行传输的(一次传输可以传多个字节),每字节为8位,每个命令或者数据块都是字节对齐的(8个时钟的整数倍)。数据按位传输,高位在前,地位在后,为全双工通信,数据传输速度总体来说比I2C总线要快,速度可达到每秒几兆比特。SPI接口是以主从方式工作的,这种模式通常有一个主器件和一个或多个从器件。在本文设计的无线通信系统中,由FPGA实现的SPI总线接口模块为主机,NRF905的SPI模块为从机。
SPI时序模式的选择:
SPI接口有4种不同的数据传输时序,取CPOL和CPHL这两位的组合。CPOL是用来决定SCK时钟信号空闲时的电平;CPOL=O,空闲电平为低电平,CPOL=1时,空闲电平为高电平。CPHA是用来决定采样时刻的,CPHA=0,在每个周期的第一个时钟沿采样;CPHA=1,在每个周期的第二个时钟沿采样。
图2为NRF905的SPI接口的时序图,由此本文设计的SPI工作模式是在CPOL=O,CPHA=O这种时序下。
1.3.2 SPI硬件设计
图3是本文无线通信系统中SPI模块的结构图,该系统中的SPI主要由时钟生成模块,SPI寄存器组,SPI功能配置的模块组成,并且通过Wishbone总线与控制器相连,具体设计如下:
时钟生成模块:由于SPI模块是基于FPGA来实现的,而FPGA外部提供的时钟较快(50 MHz或100 MHz),不适合与NRF905的SPI接口进行通信(1 Hz~10 MHz),所以需要分频来使时钟慢下来。但是至于几分频是由SPI功能配置模块来完成的。其次由于SPI协议指出数据可在上升沿或下降沿触发,所以还需要对时钟的上升沿或下降沿进行鉴别(也称抓沿程序),这个功能也由这个模块完成。
SPI寄存器模块:这个模块实现的是一个由16个8位寄存器组成的128位的寄存器组,也就是说通过SPI接口一次性可收发8~128位的串行数据。具体操作由SPI功能配置模块来完成。
上一篇:利用MEMS技术实现移动电话射频设计
下一篇:基于ARM 的RFID 中间件系统设计
推荐阅读最新更新时间:2024-05-07 16:23
采用FPGA实现 DisplayPort
在1月份举办的美国消费 电子 展(Consumer Electronics Show) 上,数家业界主要的平板电视及显示技术公司纷纷宣布推出高清 3D 电视和令人惊艳的4K x 2K LCD 显示器,从而可将用户家中、车内或移动设备上的电视、显示器以及其他电子设备之间需要交换的数据量显著提升至前所未有的水平。在这些最新的电视上,体育迷们可以欢欣鼓舞地体验到众多优异性能,如 176 度的超广视界、1,200:1 的超高对比度以及 450尼特的亮度——足以使最阴暗的洞穴通透明亮。 不过, 对于开发这些电视或连接至这些电视的电子产品的设计工程师来说,所有这些最新特性都意味着需要非常高的带宽。例如,一部具备 800 万像素的四声道 4
[嵌入式]
基于EMIF接口的DSP控制系统设计
1 引言
随着信息技术的发展,数字信号处理技术成为数字化社会最重要的技术之一。由于数字信号处理器(DSP)速度快,稳定性高,功耗小,近些年来在通信、图像处理、自动控制等领域中得到了广泛的应用。其中,美国德州仪器公司(TI)的TMS320 系列DSP 占据了世界DSP 市场的主要份额,TI 也因此成为了世界上最大的DSP 制造商。本系统采用了TMS320C6722 浮点型DSP芯片。
EMIF接口(External Memory Interface)是TMS320 系列DSP上具有的一种高速接口,其设计初衷是实现DSP 与不同类型的外部扩展存储器(如SDRAM,FLASH 等)之间的高速连接。在当前的一些应用中,
[嵌入式]
FPGA与DSP的高速通信接口设计与实现
在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。由于FPGA芯片在大数据量的底层算法处理上的优势及DSP芯片在复杂算法处理上的优势,DSP+FPGA的实时信号处理系统的应用越来越广泛。ADI公司的TigerSHARC系列DSP芯片浮点处理性能优越,故基于这类。DSP的DSP+FPGA处理系统正广泛应用于复杂的信号处理领域。同时在这类实时处理系统中,FPGA与DSP芯片之间数据的实时通信至关重要。 TigerSHARC系列DSP芯片与外部进行数据通信主要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多DSP并行处理的方式被普遍采用,它们
[工业控制]
一种基于ARM-Linux的FPGA程序加载方法
1、引言 FPGA在系统上电时,需要从外部载入所要运行的程序,此过程被称为程序加载。多数情况下,FPGA从外部专用的 EPROM读入程序。这种方式速度慢,而且只能加载固定的程序。显然,当系统需要容量大而且 FPGA要加载的程序可以根据需要有选择的加载时不能采用这种方法。本文实现了一种基于外部处理器的加载方法,速度快,而且可以根据设置给FPGA加载相应的程序。 对于 Xilinx公司的 FPGA芯片,有五种加载方式:JTAG模式,串行从模式,串行主模式,并行从模式和并行主模式。JTAG模式常用于调试时,将主机综合好的程序加载到FPGA,优先级高于其他几种模式。其他加载模式取决于 FPGA上加载模式管脚(M0,M1,M
[单片机]
51单片机与nRF401芯片在RFID系统中的应用
1 RFID系统简述 RFID即为非接触的识别系统,它是一种从20世纪90年代兴起的一项自动识别技术,它利用无线射频方式进行 非接触双向通信,以达到识别目的并交换数据,其数据存储在电子数据载体(称应答器)之中。然而,应答器的能量供应以及应答器与阅读器之间的数据交换不是通 过电流的触点接通而是通过磁场或电磁场,这方面采用了无线电和雷达技术。射频识别是无线电频率识别的简称,即通过无线电波进行识别。同其他识别系统相比, 射频识别系统具有许多优点。因此,射频识别系统开始占据了巨大的销售市场。这方面的例子有:用非接触Ic卡作短距离公共交通车票、公路收费系统以及在安全 系统、银行、医院、商店、宾馆及个人通信等场所广泛应用的无线呼叫系统,该
[单片机]
EDA技术与FPGA设计应用
摘 要:EDA技术是现代电子设计技术的核心,它在现代集成电路设计中占据重要地位。随着深亚微米与超深亚微米技术的迅速发展,FPGA设计越来越多地采用基于VHDL的设计方法及先进的 EDA 工具。本文详细阐述了EDA技术与FPGA设计应用。 关键词:电子设计自动化;现场可编程门阵列;复杂可编程逻辑器件;专用集成电路;知识产权;甚高速集成电路硬件描述语言 引言 21世纪是电子信息产业主导的知识经济时代,信息领域正在发生一场巨大变革,其先导力量和决定性因素正是微电子集成电路。硅片技术的日益成熟,特别是深亚微米(DSM,Deep Sub-Micron)和超深亚微米(VDSM,Very Deep Sub-Micron)技术,极大
[嵌入式]
基于单片机+FPGA频谱分析仪系统电路设计详解
目前,由于频谱分析仪价格昂贵,高等院校只是少数实验室配有频谱仪。但电子信息类教学,如果没有频谱仪辅助观察,学生只能从书本中抽象理解信号特征,严重影响教学实验效果。针对这种现状提出一种基于FPGA的简易频谱分析仪设计方案,其优点是成本低,性能指标满足教学实验所要求的检测信号范围。 设计方案 图1为系统设计总体框图。该系统采用C8051($8.5125)系列单片机中的 C8051($8.5125)F121作为控制器,CvcloneⅢ系列EP3C40F484C8($86.5000)型FPGA为数字信号算法处理单元。系统设计遵循抽样定理,在时域内截取一段适当长度信号,对其信号抽样量化,按照具体的步骤求取信号的频谱,并在LCD上
[单片机]
FPGA将成为传统DSP的有力挑战
宽带革命
市场环境的变化将会改变未来几年内DSP实现的方式。最显著地,宽带革命将带来最大的挑战。 宽带革命是由传统上分别属于不同领域的许多技术的融合所引发。其中包括计算、电信/无线、视频、图像和网络等。图1突出了由这一融合而新产生的一些新应用。
此类新兴应用需要处理的模拟和数字数据量呈指数型增长。这又进一步加大了对更快的DSP的需求。虽然摩尔定律仍适用于目前最快的DSP,但在所需要的性能水平与实际DSP器件所提供性能水平间的差距仍在不断增大(参看图2)。因此很明显,DSP要满足宽带革命所提出的挑战必须寻求新的数据处理方法。
此外,今天快速变化的市场上,产品上市时
[嵌入式]