目前,新墨西哥大学(UNM)的研究人员在正在开发一个基于ZigBee的无线RFID传感系统,以帮助科学家更好地了解洞穴和熔岩洞的自然环境和地球气候的潜在变化。研究人员认为,这项技术不仅能用在自然洞穴,还能用在矿井里,甚至可能用在其他星球上,如火星。
洞穴外面的环境因素可以影响地下的状况。天气波动引起的空气压力的变化可以形成洞穴内的呼吸效应,因为冷暖空气是循环流通的。科学家们说,根据地下的一些状况,地球的很多事情已经被人们了解,但是目前那些深邃的或者难以进入的洞穴几乎没有得到任何的监测和探索。像这种洞穴的监测仪器需要不能对洞穴环境造成干扰。
研究小组最初考虑在洞穴中使用传感器进行地上研究,包含了一台波动传感器(热电偶来测量温度的快速波动)。2009年,这个研究小组(小组由新墨西哥大学电子工程专业副教授Anders Jorgensen领导)开始规划一套在洞穴里使用的系统,其中的传感器网络可以跟踪波动、温度、气压和湿度,然后每隔一段时间向后端系统传送数据,其中的信息可以被保存并分析。
2009年下半年,研究人员开发了一套采用2.4 GHz的RFID传感器的无线系统来收集有关洞穴状态的数据。研究小组建立的这套系统包括温度、气压、湿度和波动传感器,但是气压的信息不管用,Jorgensen说,因为测量仪器对于研究小组想要测量的压力变化不够敏感。每个传感器连接到一个板载处理器上,带有一个飞思卡尔半导体公司的电池供电的ZigBee收发器。
在2009年的部署中,小组里的研究生把6个传感器放在Junction洞穴墙壁附近的自然平地上,Junction洞穴在新墨西哥的El Malpais国家纪念碑处(位于阿尔布开克西边,距阿尔布开克约90分钟的路程)。还有些传感器被放置在洞穴里一些海拔较高的地方,因为洞穴的顶部较高。另外一些传感器被放置在洞穴顶部中间或顶部附近的位置。研究人员在1000英尺长的洞穴里的前几百英尺放置了传感器,它们的间距为30英尺,以保持有效的阅读范围。
每个传感器设备(包括 ZigBee收发器)大小约为2英寸×3英寸。部署的RFID技术方案中包含了新墨西哥大学购买的飞思卡尔半导体公司的MC1321X评估套件。每一个传感器形成了一个ZigBee网状网络,在网络中把数据传送到下一个传感器,直到传输到达中心(Linux系统上运行的一台小电脑),这个中心位于洞穴内45米处,在传感器的中央,装有研究小组研发的RFID软件用来接收、编译和管理数据。这些传感器测量湿度、温度和波动,并把这些测量信息和传感器装置唯一的ID号传送出去。这个中心的软件采集数据,编译测量结果并把这些结果与洞穴里的传感器和传感器的位置相连。
经过24小时之后,研究小组收集的数据显示了洞穴里的前几百英尺(系统安装的长度)发生的事情。系统安装到位的那个晚上外面下起了暴雨,但洞穴的内部是干燥的。数据表明在暴雨期间,洞穴内没有什么变化,但是那个雨夜在洞穴的顶部附近有较强的空气波动,这似乎与下雨的时间是一致的。Jorgensen说,一个令人惊讶的结果是人的存在似乎会影响读数。比如说当洞穴里有研究人员或者来访者的时候温度就会上升并加大波动。此类数据对科学家来说很重要,因为洞穴里人的出现可能会影响生态系统。
这项研究进行了24个小时,在研究的基础上,研究人员发现无线传感器系统可以可靠地采集和传送洞穴里的数据。这个小组还讨论了建立一套带有蜂窝式连接的系统,数据可以实时的从中心发送到后端服务器上。
Jorgensen说,在这之后,这个小组开发出一套更小的、更有效的系统,使用德州仪器的eZ430 - RF2480入门套件,有可能使基于ZigBee的RFID标签变得更小。学生们发现,新系统耗电量比以前的系统更少,而每个传感器节点的成本仅为25美元。节点尚未安装在任何洞穴,因为这样的工程将需要再投入一些资金。研究人员发现新型的较小的节点传输距离可达150英尺。新系统的运行时间预计超过80天,每分钟从4个传感器里采集取样。省电功能的实现得益于微控制器能够从传感器采集并传输数据,然后进入睡眠模式,直到下一次采集时再激活。
洞穴外面的环境因素可以影响地下的状况。天气波动引起的空气压力的变化可以形成洞穴内的呼吸效应,因为冷暖空气是循环流通的。科学家们说,根据地下的一些状况,地球的很多事情已经被人们了解,但是目前那些深邃的或者难以进入的洞穴几乎没有得到任何的监测和探索。像这种洞穴的监测仪器需要不能对洞穴环境造成干扰。
研究小组最初考虑在洞穴中使用传感器进行地上研究,包含了一台波动传感器(热电偶来测量温度的快速波动)。2009年,这个研究小组(小组由新墨西哥大学电子工程专业副教授Anders Jorgensen领导)开始规划一套在洞穴里使用的系统,其中的传感器网络可以跟踪波动、温度、气压和湿度,然后每隔一段时间向后端系统传送数据,其中的信息可以被保存并分析。
2009年下半年,研究人员开发了一套采用2.4 GHz的RFID传感器的无线系统来收集有关洞穴状态的数据。研究小组建立的这套系统包括温度、气压、湿度和波动传感器,但是气压的信息不管用,Jorgensen说,因为测量仪器对于研究小组想要测量的压力变化不够敏感。每个传感器连接到一个板载处理器上,带有一个飞思卡尔半导体公司的电池供电的ZigBee收发器。
在2009年的部署中,小组里的研究生把6个传感器放在Junction洞穴墙壁附近的自然平地上,Junction洞穴在新墨西哥的El Malpais国家纪念碑处(位于阿尔布开克西边,距阿尔布开克约90分钟的路程)。还有些传感器被放置在洞穴里一些海拔较高的地方,因为洞穴的顶部较高。另外一些传感器被放置在洞穴顶部中间或顶部附近的位置。研究人员在1000英尺长的洞穴里的前几百英尺放置了传感器,它们的间距为30英尺,以保持有效的阅读范围。
每个传感器设备(包括 ZigBee收发器)大小约为2英寸×3英寸。部署的RFID技术方案中包含了新墨西哥大学购买的飞思卡尔半导体公司的MC1321X评估套件。每一个传感器形成了一个ZigBee网状网络,在网络中把数据传送到下一个传感器,直到传输到达中心(Linux系统上运行的一台小电脑),这个中心位于洞穴内45米处,在传感器的中央,装有研究小组研发的RFID软件用来接收、编译和管理数据。这些传感器测量湿度、温度和波动,并把这些测量信息和传感器装置唯一的ID号传送出去。这个中心的软件采集数据,编译测量结果并把这些结果与洞穴里的传感器和传感器的位置相连。
经过24小时之后,研究小组收集的数据显示了洞穴里的前几百英尺(系统安装的长度)发生的事情。系统安装到位的那个晚上外面下起了暴雨,但洞穴的内部是干燥的。数据表明在暴雨期间,洞穴内没有什么变化,但是那个雨夜在洞穴的顶部附近有较强的空气波动,这似乎与下雨的时间是一致的。Jorgensen说,一个令人惊讶的结果是人的存在似乎会影响读数。比如说当洞穴里有研究人员或者来访者的时候温度就会上升并加大波动。此类数据对科学家来说很重要,因为洞穴里人的出现可能会影响生态系统。
这项研究进行了24个小时,在研究的基础上,研究人员发现无线传感器系统可以可靠地采集和传送洞穴里的数据。这个小组还讨论了建立一套带有蜂窝式连接的系统,数据可以实时的从中心发送到后端服务器上。
Jorgensen说,在这之后,这个小组开发出一套更小的、更有效的系统,使用德州仪器的eZ430 - RF2480入门套件,有可能使基于ZigBee的RFID标签变得更小。学生们发现,新系统耗电量比以前的系统更少,而每个传感器节点的成本仅为25美元。节点尚未安装在任何洞穴,因为这样的工程将需要再投入一些资金。研究人员发现新型的较小的节点传输距离可达150英尺。新系统的运行时间预计超过80天,每分钟从4个传感器里采集取样。省电功能的实现得益于微控制器能够从传感器采集并传输数据,然后进入睡眠模式,直到下一次采集时再激活。
上一篇:RFID电子门票管理系统解决方案
下一篇:RFID图书自助借还系统在图书馆的应用
推荐阅读最新更新时间:2024-05-07 16:26
电能质量监测第2部分:符合标准的电能质量仪表的设计考虑因素
摘要 本文介绍如何借助即用型平台加快开发速度,高效设计符合标准的电能质量(PQ)测量仪表。文中详细探讨设计A类和S类电能表的不同解决方案,包括新的S类电能质量测量集成解决方案,该方案可大幅缩短电能质量监测产品的开发时间并降低成本。文章“电能质量监测第1部分:符合标准的电能质量测量的重要性”详细阐述了电能质量IEC标准及其参数。 实施电能质量解决方案面临的挑战 图1显示了用于测量电能质量的仪表所包含的基本组件。首先,电流和电压传感器必须支持该仪器的工作范围,且输入信号应能根据模数转换器(ADC)输入的动态范围进行调整。传统传感器是导致测量结果不准确的第一个来源;因此,正确选择传感器至关重要。然后,信号传输至ADC;其各种
[电源管理]
可扩展图像传感器平台用于先进驾驶辅助系统和自动驾驶
汽车行业正从SAE L2(车辆在人类监督下控制加速、刹车和转向)向完全自主的L5(车辆无需与人互动)发展,因此对强大 图像传感器 的需求日益增长,以支持先进 驾驶辅助系统 (ADAS)和 自动驾驶 的各种摄像机系统。 汽车车身周围的摄像机系统有很多不同的要求。汽车制造商通常要求前置摄像机具备最高分辨率,以能在需要看得很远的高速公路驾驶;下一代紧急刹车系统要有中等分辨率和宽视野;而对于侧面摄像机,中低分辨率即可,以提供360度机器视觉,用于辅助停车、变道,或在城市驾驶中实现先进自主性。 不断发展的ADAS解决方案需要更高功能的传感器来满足日益提高的汽车安全标准。随着汽车联网程度和自主性的提高,汽车系统的安全性和完整性对汽车制
[汽车电子]
蓄电池温度的监测在通信电源中的应用
通信电源蓄电池温度的监测方案
通信电源被称为通信系统的心脏,电源系统将直接影响通信系统的可靠性和稳定性。目前,通信系统电源供电大都是由不间断的蓄电池提供的,蓄电池温度过高势必影响到电池的工作效率和寿命。因此对蓄电池的工作温度进行实时的监测具有实际意义。美国APC公司的一项调查结果表明,大约有75%以上的通信系统故障都是由于电源设备故障而引起的。
议题内容:
蓄电池温度监测系统的系统组成 蓄电池温度监测系统的软硬件设计 解决方案:
电压、温湿度采集、温度采集 模块之间的通信 数据显示
系统组成
蓄电池温度监测系统的原理框图如图1所示。主要由电压、温湿度采集、温度采集、89S51单片机、键盘控制模块、显示电路模
[电源管理]
图像传感器促成新一代先进驾驶辅助系统 (ADAS)方案
动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON)近日宣布,博世 (Bosch) 已选择全球汽车图像传感器称冠的安森美半导体作为其先进驾驶辅助系统 (ADAS) 一项未来摄像机技术的图像传感器供应商。新型图像传感器是为满足 OEM 对未来 ADAS 摄像机的需求而研发的,具有高动态范围 (HDR) 特性,并且配有顶尖的安全功能特性。 由于驾驶员越来越因各种小玩意装置而分心,因此这新技术在增强安全方面起着关键不同的作用,这些不同之处有助于驾驶员在非常微光条件下也能识别行人或骑自行车的人。安全标准诸如 欧盟新车安全评估协会 (EuroNCAP)已引领全球设立减轻追尾相撞危害的要求,把覆盖范围扩大
[嵌入式]
“十面霾伏”,ADI专家解读气体监测技术趋势和解决方案
近段时间,全国各地集中出现雾霾天气,PM2.5爆表,口罩脱销,空气严重污染……一度成为网络的热门关键词。一时之间,环境监测相关设备备受关注。日前,在一场由易维讯信息咨询公司主办的“2013产业和技术展望媒体研讨会”上,ADI公司亚太区仪表行业市场经理叶裕民(Brian)先生做了题为“环境监测中气体监测的技术以及发展趋势”的演讲,这在眼下灰霾围城的敏感时期,引发了在场各媒体及嘉宾的高度关注。 图1.ADI公司亚太区仪表行业市场经理叶裕民在“2013产业和技术展望媒体研讨会”上分析气体监测技术趋势。 Brian指出,最近变得非常热门的空气污染防治,主要是颗粒物PM (Particulate Matter) 监测。PM2.5是特
[测试测量]
智驾系统感知层面最常见的几种传感器
人类是视觉动物,凭借双眼获取视觉信息、辨别方向和距离。而当你的汽车帮助你驾驶的时候,什么又是它的“眼睛”呢? 答案是车载传感器。它们持续不断地采集环境信息,然后回传给智能汽车的大脑——计算平台。通过感知算法精准地复现出周围环境,再由决策算法基于对周围环境的认知来进行车辆的路径规划。 今天我们就来说说智驾系统感知层面最常见的几种传感器,它们有什么区别?又如何实现互补? 摄像头是最常见的汽车传感器,装在车身四周可以从多角度捕捉环境图像,在 90 年代就已开始进入商用并逐渐普及。它也是最接近人眼的传感器,能够获取到丰富的色彩和细节信息,比如车道线,指示标志,红绿灯等等。但是,其局限性也非常明显,如果遇到会暗光、逆光等影响“视
[嵌入式]
飞思卡尔FXTH87系列助保隆科技推出全球最小的胎压监测系统模块
汽车轮胎智能监测系统(TPMS)与汽车安全气囊、防抱死制动系统(ABS)作为汽车三大安全系统已经广泛为大众认可并逐渐普及,TPMS相关产品与技术近年来迎来了发展的机遇期。尤其是随着全球相关的法规开始实施——例如,2007年美国强制所有车辆配备TPMS,欧盟也要求从2014年使用TPMS,世界各国陆续加入强制执行TPMS的行列。 在刚过去的十月二十日,汽车电子行业有两个重要的产品发布值得特别关注——飞思卡尔宣布推出全球最小的集成胎压监测系统FXTH87,上海保隆汽车科技股份有限公司宣布推出全球最小、高度集成的TPMS模块。而后者正是基于飞思卡尔的全球最小集成胎压监测系统半导体解决方案的成功应用。 全球最小保隆D型TPMS
[汽车电子]
英飞凌推出全新电池管理系统IC系列 优化电池监测和平衡
据外媒报道,英飞凌推出全新的电池管理系统(BMS)IC系列,包括TLE9012DQU和TLE9015DQU,可为电池监测和平衡提供优化的解决方案。该全新BMS芯片结合了英飞凌卓越的测量性能与最高的应用稳健性,可作为电池模块、电芯到电池组和电芯到汽车电池拓扑的具有竞争力的系统级解决方案。 图片来源:英飞凌 该BMS IC系列适用于广泛汽车应用,如轻型混合动力 电动汽车 (MHEV)、混合动力电动汽车(HEV)、插电式混合动力电动汽车(PHEV)和纯电动汽车(BEV),但也可用于工业和消费电子应用中,以及电动两轮和三轮车的储能系统和电池管理系统。 这些IC还可用于安全相关应用:该车规级BMS解决方案满足ASIL-D级
[汽车电子]