摘要:AD831是美国AD公司生产的单片低失真混频器,它采用双差分模拟乘法器混频电路。文中介绍了AD831的工作原理、内部电路、引脚排列及功能说明,最后给出了AD831在频踪式雷达本振中的应用电路。
关键词:混频器 射频 本振 中频 AD831
混频器在广播、通信、电视等外差式设备及频率合成设备中具有广泛的应用,它是用来进行信号频率变换并可保持调制性质不变的电路组件,其性能对整个系统有着足轻得的作用。AD831是AD公司生产的低失真、宽动态范围的单片有源混频器,它输入输出方式多样,使用灵活方便。
1 AD831的组成及主要特点
AD831由混频器、限幅放大器、低噪声输出放大器和偏置电路等组成,主要用于HF和VHF接收机中射频到中频的频率转换等场合。AD831采用双差分模拟乘法器混频电路,具有+24dBm三阶交叉点,且三阶互调失真小,同时有+10dBm的1dB压缩点,线性动态范围大,神经质本振输入信号仅需要-10dBm。同无放大器的混频器相比,它不仅省去了对大功率本振驱动器的要求,而且避免了由大功率本振带来的屏蔽、隔离等问题,因而大大降低了系统费用;AD831的本振和射频输入频率可达到500MHz,中频输出方式有两种差分电流输出和单端电压输出,在采用差分电流输出时,输出频率可达250MHz;采用单端电压输出时,输出频率大于200MHz。AD831既可用双电源供电也可以用单电源供电,双电源供电时所有端口均可采用直流耦合,因而可由用户根据需要通过外围电路控制电源功耗。AD831采用20脚PLCC封装,图1是AD831的引脚排列图,表1是它的引脚功能说明。
表1 AD831的引脚功能说明
引 脚 | 名 称 | 功 能 | 引 脚 | 名 称 | 功 能 |
1 | Vp | 正电源 | 11 | LOP | 本振输入 |
2 | IFN | 混频级电流输出 | 12 | Vp | 正电源 |
3 | AN | 输出放大器负输入端 | 13 | GND | 地 |
4 | GND | 地 | 14 | BIAS | 偏置输入 |
5 | VN | 负电源 | 15 | VN | 负电源 |
6 | RFP | 射频输入 | 16 | OUT | 输出放大器输出 |
7 | RFN | 射频输入 | 17 | VFB | 输出放大器反馈输入 |
8 | VN | 负电源 | 18 | COM | 输出放器输出公共端 |
9 | Vp | 正电源 | 19 | AP | 输出放大器正输入端 |
10 | LON | 本振输入 | 20 | IFP | 混频级电流输出 |
2 工作原理
2.1 混频原理
图2所示是AD831的内部电路框图。图中,频频输入信号加到晶体管Q1、Q2的基极,由于电阻R1、R2的负反馈潮作用,因而差分电流射频信号的幅度成线性关系。-10dBm的本振输入信号经过一个高增益、低噪声的限幅放大器转换成方波,而后交叉地加到Q3~Q6的基极,最后混频信号从IFP和IFN脚输出。当将IFP、IFN连接到有中心抽头的变压器上时,AD831不可提供从射频到中频的单路输出。若使用输出放大器,则可降IFP和IFN脚直接与AP和AN脚相连,这时,片内的负载电阻可将输出电流转换成电压来驱动输出放大器。
2.2 控制偏置电流
AD831的射频输出的最大值与偏置电流成比例,在BIAS引脚与电源之间接一个电阻可使偏置电流减小。正常工作时可将BIAS脚悬空,而在低功耗工作时,可将BIAS脚直接连接到正电源。混频器工作电流的调节范围可从正常工作的100mA调整至最小功耗时的45mA。2.3 低通滤波
在混频和输出放大器之间可加入一个简单的低通滤波器,方法是在芯片的内部电阻性负载上并联一个外接电容(芯片的内部电阻性负载为14Ω,允许有20%的偏差),这样在下混频应用中将显著衰减本振信号和射频信号的和频成分。该一阶低通滤波器的转折频率,应选择在比下混频的IF输出高一个倍频程的位置。例如,对70MHz中频输出而言,-3dB点可选在140MHz附近,此时CF应为82pF。
2.4 输出放大器的应用
AD831的输出放大器可将混频的差分电流转换为单端电压输出形式,并可在50Ω的负载上提供高达1V的峰-峰值电压。把AN和AP直接连接到混频级的集电极输出上,并将输出端(OUT)接至VFB,这样可提供单增益。改变增益时,可在放大器的输出端外接一个电阻网络R3、R4并连接至VFB。
3 在频踪式雷达本振中的应用
图3是基于直接数字频率合成技术(DDS)的某频踪式雷达的本振组成框图。该系统应用了两片AD831,分别用作下混频和上混频。
恒温晶振产生的频率稳定度达10 -9的100MHz信号,功率分配器分为四路:一路放大后作DDS时钟;一路送往频率测量电路作为测频基准;一路则送至AD831与DDS的输出信号混频,经滤波取上中频放大后作为本振信号。本振信号同样经四功分器分为四路,其中两路作为雷达的本振信号,一路用作检测,一路则送到另一片AD831与雷达发射机耦合来的射频信号进行混频。AD831输出的下中频信号经滤波后送到频率测量电路进行测频,以使单片机根据测量结果改变DDS的输出频率从而实现频率跟踪,保证雷达中频信号频率的稳定。
3.1 下混频电路
图4是AD831用于下混频工作时的典型电路。其电源电压应在±4.5~~±5.5V的范围内。图中用C1、C2、L1组成高通滤波网络,以保证射频信号的输入;82pF的电容CF跨接在IFN、IFP与Vp端作低通滤波器。当本振频率低于100MHz时,其电平应在-20dBm以保证AD831安全工作,而在本振频率高于100MHz时,是怦应为-10dBm。
在频踪式雷达本振系统中可通过调整图4中跨接在16、17、18脚的两个电阻R3、R4的阻值来使中频信号输入端得到1V的峰峰值,并值接经比较器整形为TTL方波后送往数字测频系统进行频率测量。当本振频率不变时,中频信号的频率变化反映了雷达发射信号的频率变化,而为了使接收机中频频率的稳定,此时只须根据测量结果的调整本振频率,即可实现本振频率跟随发射脉冲频率变化,以及保持中频信号频率稳定,还能很好地解决单级振荡式雷达发射机发射频率漂移的问题。
3.2 上混频电路
图5为AD831上混频器的应用电路图。将DDS的输出信号与来自晶振的100MHz信号分别输入到AD831的RF端和LO端,这样可使DDS芯片产生的射频信号在6MHz~38MHz之间可调,并使相应的上混频输出信号在106MHz~138MHz之间变化。为抑制高次谐波,电路中采用了声表面滤波器组,四个声表面滤波器的中心频率分别为108MHz、113MHz、120MHz和131MHz,通频带分别为106MHz~110MHz、110MHz~116MHz、116MHz~124MHz和124MHz~138MHz。通过由单片机控制的射频开关来选择滤波器,使在某一时刻的信号只通过与其频率相对应的滤波器。
3.3 使用中应用注意的问题
在使用AD831的过程中,曾出现其输出噪声较大时系统不能正常工作的情况,经改进电路板布局重新布线后有一定改善,并将AD831及外围电路装入1mm厚铜板制作的屏蔽盒中,输入输出全部采有SAM50接头,电源输入端均加入滤波网络,其结果是输出噪声显著降低,系统工作稳定。因此,合理选择元件、精心布局电路板、有效的电源去耦滤波及可靠的屏蔽对发挥AD831的性能是十分重要的。
AD831的外围电路简单,动态范围大、失真小,且输出方式多,使用灵活方便,是性价比高的混频器。
上一篇:CDMA/FM发送调器RF9958及其应用
下一篇:无线收发数传MODEM模块PTR2000的原理与应用
- 热门资源推荐
- 热门放大器推荐
- Wi-Fi 8规范已在路上:2.4/5/6GHz三频工作
- 治理混合多云环境的三大举措
- Microchip借助NVIDIA Holoscan平台加速实时边缘AI部署
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 高通推出其首款 RISC-V 架构可编程连接模组 QCC74xM,支持 Wi-Fi 6 等协议
- Microchip推出广泛的IGBT 7 功率器件组合,专为可持续发展、电动出行和数据中心应用而设计
- 英飞凌推出新型高性能微控制器AURIX™ TC4Dx
- Rambus宣布推出业界首款HBM4控制器IP,加速下一代AI工作负载
- 恩智浦FRDM平台助力无线连接
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况