TD-SCDMA直放站ALC控制方案研究

发布者:和谐共存最新更新时间:2007-10-23 来源: 腾讯科技关键字:输出  时钟  比较  增益 手机看文章 扫描二维码
随时随地手机看文章
1.引言

TD-SCDMA(Time Division Synchronous Code Division Multiple Access时分同步码分多址)技术是我国获得国际电联批准的第一个第三代移动通信系统标准,该标准能满足日益增长的无线通信高速多媒体业务和可在世界范围移动的需求,采用了智能天线、联合检测、软件无线电和接力切换等新技术,它必然成为我国部署3G网络的主角。在TD-SCDMA系统中直放站是不可或缺的一部分。直放站的应用不仅可以增加网络覆盖,使施主基站的覆盖得到延伸,也能增加空闲基站的话务负荷,或是分摊繁忙基站的话务量,还可以起到优化网络的作用等,同时也是解决室内覆盖的重要设备。

本文所讨论的ALC(Automatic level control自动电平控制)是直放站系统中极为重要的一环,它是指当放大器输出信号电平到达ALC设定值时,增加输入信号电平,放大器对输出信号电平的控制能力。对于直放站来说,ALC技术所实现的功能就是一方面控制输出电平保证功放器件不会工作在过功率状态下,另一方面控制直放站的输出功率在覆盖允许范围内,既能够满足网络规划时的覆盖距离要求,又不会产生过强的输出信号对相邻基站造成干扰。

2.ALC控制方案研究

2.1 ALC的控制原理

要做到在输出信号到达设定值时,增加输入信号电平,而输出信号电平基本保持不变,也就是使放大电路的增益自动地随信号强度而调整,使系统的输出电平保持在一定范围内,因此称为自动电平控制。一般的ALC电路可以分成增益受控放大电路和控制电压形成电路两部分。其工作原理示意图如下:

图1 ALC电路工作原理图

增益受控放大电路位于正向放大通路,其增益随控制电压而改变。控制电压形成电路的基本部件是检波器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。放大电路的输出信号Uo 经检波并经滤波器滤除低频调制分量和噪声后,与设定的最大输出功率进行比较,产生用以控制增益受控放大器的电压Uc 。当输入信号Ui增大时,Uo和Uc亦随之增大 。而作为一个负反馈网络, Uc 增大使放大电路的增益下降,从而使输出信号的变化量显著小于输入信号的变化量,达到自动增益控制的目的。也就是说,ALC电路的主要工作原理是用反应信号幅度变化趋势的直流缓变电压去控制压控衰减器,以达到控制输出电平的目的。

2.2 TD-SCDMA信号的特点

图2 TD-SCDMA信号结构

TD-SCDMA信号的结构如上图所示。其帧结构将10ms的无线帧分成两个5ms的子帧,每个子帧中有7个常规时隙和3个特殊时隙。三个特殊时隙分别为下行导频时隙DwPTS、主保护时隙GP和上行导频时隙UpPTS。在7个常规时隙中TS0总是分配给下行链路,而TS1总是分配给上行链路。通过灵活配置上下行时隙的个数,使TD-SCDMA适用于上下行对称及非对称业务模式。上行时隙和下行时隙之间由转换点分开。在TD-SCDMA系统中,每个 5ms的子帧有两个转换点:第一个转换点是从下行链路转到上行链路,位置在DwPTS和UpPTS之间的GP;第二个转换点是从上行链路转到下行链路,位置在每个子帧中最后一个上行时隙和第二个下行时隙之间,TS0是第一个下行时隙。其中,第一个转换点相对于每个子帧的开始时间是固定的;第二个转换点随着分配给上下行的时隙数不同而变化。

由于TD-SCDMA综合使用了时分、频分、码分和空分多种复用技术,也就是说,在每个频点的每个常规时隙都可同时承载多个用户,这些用户按照不同的扩频码来区分,在智能天线技术更加成熟之后甚至可以同扩频码根据空间区分。而系统根据一定的DCA算法动态的将信道分配给用户,在某个时隙中的多个用户距离基站的距离会有不同,移动的速度也会不同并且具有不同的信道衰落特性。实际上,在一个子帧中,不同的时隙会有不同的码道占用情况,造成各时隙功率的差异,而多个连续子帧的同一常规时隙的功率也都是不同的。

2.3 ALC控制方案分析

由TD-SCDMA的信号子帧格式可以发现,这是一种高峰均比的突发脉冲信号,而并非连续信号,这就对普通放大器的自动电平控制带来一定的困难,当信号出现的时候由于自动电平控制不能立即做出响应,而自动电平控制开始响应后造成突发信号已经失真,没有真正起到自动电平控制的作用。并且由于每个用户在一个子帧中都只能分配到一个时隙,那么传统的电平控制就存在这样一个问题:在进行电平控制的时候是对于整个链路的衰减,所以当某个时隙功率过大后,会将整个链路进行衰减,这必然使其他没有过功率的时隙的功率也跟着降低,那么必然影响其它时隙用户通话。因此,我们提出一种分时隙ALC的方案。

2.3.1 硬件分时隙ALC

根据ALC的控制原理和TD-SCDMA子帧的特点,直接的解决方案是通过减小ALC回路中RC滤波器的时间常数以提高反应速度,使 ALC电路在每个时隙的突发时刻都进行一次增益控制,但同时带来的问题就是当RC的时间常数较小时,高峰均比的TD突发信号就会通过RC低通滤波器频繁控制压控衰减器动作,使时隙内链路增益波动,造成EVM指标恶化。

EVM (Error Vector Magnitude误差矢量幅度)定义为误差矢量功率与参考信号矢量功率的均方比,以百分数形式表示,测试的时间为一个时隙,它所表征的是测量信号同参考信号的误差矢量,用于衡量总体调制质量,反应信号的损伤程度。经过实验,不同时间常数的EVM恶化情况可见下表(转换点在TS3和TS4之间):

由于实验所用ATT(attenuator衰减器)电路不能对TD突发信号有效的控制(即达到输入增加1dB,输出增加在0.2dB内),因而我们用加在压控ATT上的控制电压的有效值来区别衰减量的大小,0.68V约对应起控3dB;0.80V约对应起控5dB。

可以发现:

ALC起控衰减越大,EVM恶化越严重;

起控回路滤波器的时间常数越小,EVM恶化越严重;

突发信号的前沿(TS4)比突发信号的后沿(TS0),EVM恶化严重;

同样的时隙,码道数少时EVM受ALC电路动作影响大。

由此可知,TD-SCDMA信号的突发特性和高峰均比用传统的ALC硬件电路是难以实现分时隙电平控制的:时间常数大则无法对突发信号前沿进行控制,且易导致此时放大器工作于过功率等非线性状态,造成放大器损坏;时间常数小则使得整个回路在一个子帧内频繁动作,造成各时隙信号削波,EVM指标恶化。

因此我们提出软件分时隙上下行ALC的实现方案。

2.3.2 软件分时隙ALC

此方案的主要思想是当直放站和基站建立同步以后,使用高速AD芯片对每个时隙功率进行采集,多帧对应时隙累加取平均并将结果存入对应各时隙输出功率寄存器中,再根据所设置的ALC值、当前各时隙输出功率以及第二转换点,计算出各时隙的衰减值存入寄存器,然后根据系统同步计数器值分别在不同时隙命令按照衰减值寄存器中的值执行衰减。

此方案的优点在于使用软件定时控制,软件可以控制衰减链路在各时隙的保护间隔动作,起控后不会造成信号失真,因而也不会造成EVM的指标恶化;可以对各时隙分开控制,某时隙过功率后,只对这个时隙进行控制,而不会影响其它时隙功率,经过验证,即使在深度起控10dB情况下,直放站输出信号各个时隙的射频指标都不会受到影响;并且控制灵活,只需要软件设置ALC值即可,不需要调节电位器来改变ALC值。

3. 小结

采用软件分时隙ALC对TD-SCDMA信号进行功率控制轻易避免了传统的硬件ALC电路所无法克服的控制电压直流缓变特性与TD-SCDMA突发信号的矛盾,并且对不同的时隙有不同的衰减值,不仅保障本时隙射频指标正常,对其它时隙也没有影响,软件控制衰减器在时隙保护间隔动作,保证不会损伤信号,且控制灵活,调测时易于修改,极好的解决了由于TD-SCDMA信号格式特殊性所引起的功率控制问题。但软件控制毕竟需要一定的检测计算时间,起控速度比硬件电路稍慢,可能造成短时间的过功率时不能正常起控。因此,如何以更低的检测时间得到更高的检测准确度是软件分时隙ALC需要不断改进的方向。

关键字:输出  时钟  比较  增益 引用地址:TD-SCDMA直放站ALC控制方案研究

上一篇:超宽带无线通信中LDPC码硬件仿真实现
下一篇:802.16/WiMax组网关键技术探析

推荐阅读最新更新时间:2024-05-07 15:59

PADS中CAM输出的相关设置
详细介绍了PADS中CAM输出的相关设置,现在介绍给大家学习   首先导入一个标准的CAM输出文档,由IMPORT输入一个模板,该模板由他人提供,也可自己生成。         在CAM输出界面,进入DRILL DRWAING,按OPTION,点击右上方DRILL SYMBOLS按钮,进入过孔设置界面,点击REGENERATE按钮,将生成对应本PCB的过孔文件。      然后在NC DRILL里按DEVICE SETUP按钮,将过孔文件设置为CAM350的标准,将LEADING TRAILING设置为2/4.      最后要将CAM的输出格式改为RS274X,且更改
[工业控制]
PADS中CAM<font color='red'>输出</font>的相关设置
ROHM开发出LiDAR用75W高输出功率激光二极管
ROHM开发出LiDAR用75W高输出功率激光二极管“RLD90QZW3” 通过业界超窄线宽实现高密度发光,有助于LiDAR应用产品支持长距离并实现更高精度 全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款高输出功率半导体激光二极管“RLD90QZW3”,非常适用于搭载测距和空间识别用LiDAR*1的工业设备领域的AGV*2(无人搬运车)和服务机器人、消费电子设备领域的扫地机器人等应用。 近年来,在扫地机器人、AGV和自动驾驶汽车等需要自动化工作的广泛应用中,可以准确测量距离和识别空间的LiDAR日益普及。在这种背景下,为了“更远”、“更准确”以及“更低功耗”地检测到信息,对提高作为光源的激光二极
[传感器]
ROHM开发出LiDAR用75W高<font color='red'>输出</font>功率激光二极管
双电压输出电源电路图
其中3.3V主电源由降压型单片同步开关电源TPS62000构成;该器件具有软启动功能,能够有效抑制输入浪涌电流与输出电压过冲,最大输出电流600mA。TPS62000的输出端“L”为低电平时,外接P沟道场效应管Q1随之导通而令储能电感L1副绕组的感应电压向输出电容C1充电,C1之端电压同3.3V主输出叠加即为辅助输出电压,其数值取决于L1主、副绕组的匝数比;辅助输出若为5V,匝数比可取2:1。工作频率750kHz,变换效率可达95%。双电压输出电源电路图:
[电源管理]
双电压<font color='red'>输出</font>电源电路图
通用定时器(中断功能和PWM输出)
目录: 1:概述 2:常用中断功能 3:PWM输出 1:概述 在开发中,定时器的应用很广泛,简单总结为三个方面: 1.1:中断功能的应用,常用的是利用定时器中断,实现定时、记时、延时、超时判断,前面博文中有总结过内核定时器的各种使用的方法; 1.2:比较输出,常用应用就是PWM输出,用脉宽调制来实现led、电机等的控制; 1.3:输入捕获,可以抓取输入的方波信号,统计波形周期和占空比,最常见利用就是门控,将外部模拟量转化为数字量(定时器的计数值); 2:常用中断功能 定时器的初始化详细参考手册,主要的一点是确定定时器的溢出周期,利用公式:Tout = (arr+1)*(psc+1)/Tclk,可计算出定时器的溢出频率; 如
[单片机]
stm32专题五:时钟树(三)自定义配置HSE时钟 超频
在前一节分析了stm32系统默认时钟配置的过程,现在想自己实现一个自定义修改时钟配置的函数。其实原理很简单,因为系统在上电复位时就会按照默认完成时钟配置。因此,要先复位时钟,然后按照流程来配置就ok,我们通过修改PLL锁相环的倍频因子,就可以实现超频。用到的所有函数,都可以在rcc.h和flash.h中找到。 bsp_rccclkconfig.c /* RCC时钟配置函数 */ #include bsp_rccclkconfig.h // 自定义时钟配置函数 void HSE_SetSysClk(uint32_t RCC_PLLMul_x) { ErrorStatus HSEStatus; // 把
[单片机]
stm32专题五:<font color='red'>时钟</font>树(三)自定义配置HSE<font color='red'>时钟</font> 超频
一种新颖的限流比较器的设计
   1 引言   近年来,LDO(Low Dropout)线性稳压器和DC/DC 变换器等电源管理芯片已广泛应用于便携式电子系统中 。但是,开关稳压器相对线性稳压器降低了平均输入电流,提高了效率 。Step-Down 电源属于DC/DC 变换器中的降压变换器,它的主要缺点是,在轻载时比如手机待机时,静态电流较高,显著降低了电池的使用寿命,所以在低负载条件下,我们通过PFM 限流比较器来控制芯片使之进入Idle 模式,这样就大大延长了电池寿命,提高了芯片的效率。    2 本文采用的DC-DC 降压变换器电路结构   本文采用的DC-DC 降压变换器结构采用同步校正器代替传统的二极管,极大地提高了DC-DC 降压变换器的效率
[模拟电子]
MDO3000 系列混合域示波器在时钟测试的用途
MDO3000示波器配有省时工具,可帮助用户比以前更快地发现、捕获、搜索和分析设计中的问题。具有2个或4个带宽范围为100MHz-1GHz的模拟输入通道、高达5GS/s的采样率。1GHz仪器标配1GHz无源电压探头,这些低电容探头能够最小化对被测器件的影响,同时减轻信号失真和把信号 干净 地传送至示波器进行测量。借助新的FastAcq(快速采集)特性,MDO3000示波器提供每秒超过280,000个波形的捕获速率,并将波形显示在鲜亮的数字荧光显示屏上,迅速发现难捡事件。 MDO3000系列混合域示波器在时钟测试的用途 1.查找非预计的RF辐射 2.观察扩频时钟的频谱 3.检查频率,查看信号质量
[测试测量]
单片机(AT89C51)的仿真实验——流水灯和逐一闪烁灯(输入与输出
在进行仿真实验前必须先装了软件,一个是单片机仿真软件(ISIS 7 Professional)和单片机写程序的软件(Keil uVision4),一个写程序一个烧程序。如果没装的可以私聊我。 流水灯的实现(正向的流水灯): 原理: P1初始值是:1111 1111和temp(0000 0001)异或等于以后 P1=1111 1110使得第一个灯亮着, 进入循环0000 0001左移一位得到0000 0010,然后再和P1(1111 1110)异或等于以后 P1=1111 1100使得第一个灯和第二个灯都亮着,下面也是如此往复的循环,一盏一盏的连着点亮就实现了流水灯,然后一盏接着一盏的灭掉。 #include reg51
[单片机]
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved