集成电路刚被发明出来的时候,当时的特征尺寸大概是10μm(10000nm),之后逐步缩小到了5μm、3μm、1μm、0.8μm、0.5μm、0.35μm、0.25μm、0.18μm、0.13μm、90nm、65nm、45nm、32nm、22nm、16nm、10nm,发展至今,台积电已经开始量产7nm+(采用EUV的7nm)的芯片了,明年还将量产5nm的。在这个过程当中,制程共经历了20几代变革,未来几年,3nm、2nm芯片也将实现量产。从5μm到5nm,实现了1000倍的变化,大概经历了40多年的时间。
人的头发横截面直径大概是80μm,以采用28nm制程工艺的SRAM为例,可以在头发的横截面上放20735个这个样的SRAM单元,随着微缩技术的发展,在直径为80μm的横截面上,可以容纳越来越多的SRAM单元了。这主要是由光刻工艺及其技术演进实现的。
然而,随着特征尺寸的不断微缩,逐渐达到了半导体制造设备和制程工艺的极限,眼下,集成电路的晶体管数量,以及功耗和性能已经很难像过去40年那样,几乎一直在顺畅地呈现出线性的发展态势(也就是按照摩尔定律演进),而且,不但工艺难度越来越大,成本也高得吓人,能够提供10nm及更先进制程工艺芯片制造的厂商只剩下台积电、三星和英特尔这三家。
在这三家中,真正引领摩尔定律向前演进的还是英特尔和台积电这两强,这两家公司一直是摩尔定律的支持者,台积电更是认为,半导体制程工艺可以按照摩尔定律,演进到0.1nm。而在这两强当中,台积电后来居上,在最近5年左右的时间里,在半导体制程工艺上一直压英特尔一头,不过,台积电成立于1987年,而英特尔成立于1968年,且摩尔定律就是由英特尔创始人之一的戈登·摩尔(Gordon Moore)于1965年提出来的。
因此,真正伴随芯片制造和摩尔定律从诞生,到发展壮大,再到如今的缓慢前行,就是英特尔了,通过该公司的芯片发展历程,以及制程节点的演进和晶体管数量的提升,可以对半导体工艺和摩尔定律的发展有一个直观和系统的认识。
从第一款商用处理器到10nm芯片
1965年4月,《电子学》杂志(Electronics Magazine)第114页发表了戈登·摩尔(时任仙童半导体公司工程师)撰写的文章〈让集成电路填满更多的组件〉,文中预言半导体芯片上集成的晶体管和电阻数量将每年增加一倍,这也就是摩尔定律的雏形。
1975年,摩尔在IEEE国际电子组件大会上提交了一篇论文,根据当时的实际情况对摩尔定律进行了修正,把“每年增加一倍”改为“每两年增加一倍”,而普遍流行的说法是“每18个月增加一倍”。但1997年9月,摩尔在接受一次采访时声明,他从来没有说过“每18个月增加一倍”。
1968年,也就是摩尔提出摩尔定律最初版本后三年,他与朋友联合创立了英特尔公司,该公司最初是以设计和生产存储器为主,后来根据应用和市场发展趋势,逐步将业务重心转移到了处理器上。
1971年,英特尔发布了世界第一块商用微处理器4004,当时采用的是10μm制程工艺,使得该芯片上集成了2250个晶体管。
1979年,该公司又推出了处理器8086,采用了3μm制程工艺,使得该芯片上集成了29000个晶体管,较10μm工艺有了10几倍的提升,这也是摩尔定律演进的首次价值体现。
1982年,英特尔推出了80286,采用1.5μm制程,晶体管数量达到了134000个。
1985年,该公司推出了著名的386系列处理器,将制程工艺节点提升到了1μm,这使得晶体管数量又猛增到275000个,与3μm相比,又提升了近10倍。
1989年,英特尔推出了486系列处理器,采用0.8μm制程,使得晶体管数量达到120万个。
1993年,该公司推出了首款奔腾处理器,采用0.8μm制程,晶体管数量则提升到了310万个。
1995年,推出了奔腾Pro,将制程工艺节点演进到了0.6μm~0.35μm,从而使得晶体管数量达到了550万个。
2000年,该公司又推出了奔腾4系列处理器,采用了0.18μm制程,晶体管数量达到4200万个。
2006年,推出了酷睿系列处理器,采用了65nm制程,晶体管数量突破了1亿,达到1.51亿个。
2010年,英特尔又推出了酷睿i7-980x,采用了32nm制程,晶体管数量突破了10亿,达到11.7亿个。
2015年,推出了酷睿i7-4960x处理器,采用了22nm制程,使得晶体管数量提升到了18.6亿个。
发展到最近两三年,英特尔处理器则以14nm为主要制程。
从2007年开始,英特尔在制程方面,进入了著名的“Tick-Tock”节奏,“TIck”代表制程工艺提升,而“Tock”代表工艺不变,芯片核心架构升级。一个“TIck-Tock”代表完整的芯片发展周期,耗时两年。
按照TIck-tock节奏,英特尔可以跟上摩尔定律的演进,大约每24个月可以让晶体管数量翻一番。2015年,该公司宣布采用“架构、制程、优化” (APO,Architecture Process OpTImization)的三步走战略。这意味着每36个月,晶体管数量才会翻一番。
自2015年至今,英特尔已在14nm制程节点处停留约4年时间,从Skylake(14nm)、Kaby Lake(14nm+)、CoffeeLake(14nm++),一直在更新14nm制程。其10nm原计划于2016年推出,但经历了多次推迟,直到今年才实现量产。
台积电后来居上
与英特尔类似,台积电跟随摩尔定律的脚步一刻也没有停歇,而且,台积电凭借晶圆代工业务后来居上,赢得了智能手机时代苹果、高通、华为海思等大客户。台积电于2015下半年量产 16nm FinFET工艺,这与英特尔的14nm量产时间基本同步。此后4年,英特尔反复升级14nm节点,10nm经历多次跳票。而台积电则于2017年量产10nm工艺,并于2018年率先推出7nm工艺,从而在紧跟摩尔定律步伐方面,开始领先于英特尔。而英特尔10nm制程一再推迟,后段采用多重四图案曝光(SAQP)良率较低可能是主要原因。
7nm方面,EUV是未来更先进制程不可或缺的工具,英特尔采用EUV双重曝光技术已有提前布局,仍有望按原定计划量产,由于英特尔7nm节点不再面临SAQP四重曝光技术难题,而是EUV双重曝光,有望按原计划,于2020年量产。
而从晶体管密度、栅极间距、栅极长度等指标来看,英特尔的14nm、10nm节点则要优于台积电,2014年,英特尔发布的14nm节点,每平方毫米3750万个晶体管,台积电16nm节点约为每平方毫米2900万个晶体管。英特尔14nm节点栅极长度24nm,优于台积电的33nm。10nm方面,英特尔的晶体管密度为每平方毫米1.008亿个,台积电10nm节点晶体管密度为每平方毫米4810万个。
目前来看,台积电略占上风,未来发展,关键要看英特尔10nm量产进度。就目前已发布的技术信息来看,英特尔持续更新的14nm与台积电的10nm处于同一量级,台积电已量产的7nm制程显著优于英特尔14nm的。可见,台积电在量产时间上略占上风,而实际技术储备差别不大。
结 语
英特尔与台积电是摩尔定律演进的主要推动力量,而前者开创了该定律,并为其发展打下了基础,后者则后来居上,在商业模式占优、且敢于重金投入的情况下,带动了产业发展。但目前来看,摩尔定律显然遇到了极大的挑战,或者说进入了窘境,作为其坚定支持者的英特尔和台积电,也正在想着各种办法延续这一定律。
上一篇:曝锐龙5 3500X将在10月底登陆韩国市场
下一篇:AMD在CPU市场的份额已经攀升至30%左右 从2016年的低谷彻底反弹
推荐阅读最新更新时间:2024-11-05 22:29
- 消息称苹果、三星超薄高密度电池均开发失败,iPhone 17 Air、Galaxy S25 Slim手机“变厚”
- 美光亮相2024年进博会,持续深耕中国市场,引领可持续发展
- Qorvo:创新技术引领下一代移动产业
- BOE独供努比亚和红魔旗舰新品 全新一代屏下显示技术引领行业迈入真全面屏时代
- OPPO与香港理工大学续约合作 升级创新研究中心,拓展AI影像新边界
- 古尔曼:Vision Pro 将升级芯片,苹果还考虑推出与 iPhone 连接的眼镜
- 汇顶助力,一加13新十年首款旗舰全方位实现“样样超Pro”
- 汇顶科技助力iQOO 13打造电竞性能旗舰新体验
- BOE(京东方)全新一代发光器件赋能iQOO 13 全面引领柔性显示行业性能新高度
- 空调遥控器YAP0F3遥控器+涂鸦WBR3
- 具有 400kHz 电荷泵开关的 LT8494EUF 宽输入和输出范围 SEPIC 转换器的典型应用电路
- NCV7691RCLV1GEVB:八路后组合灯评估板
- iCoupler 技术内部:使用 ADuM3220 隔离式栅极驱动器驱动 H 桥
- 双输出低压差稳压器的典型应用
- LTC3526BEDC 1 节电池至 2.85V 升压转换器的典型应用电路
- 用于白光 LED 驱动器的 TB62737FPG 升压型 DC-DC 转换器的典型应用
- 使用 Nuvoton Technology Corporation 的 NUC123SD4AN0 的参考设计
- STEVAL-ISA188V1,基于 A6986F3V3、8V、1.5A 同步降压开关稳压器的评估板
- 使用 ADA4077-1ARZ 双电源高精度放大器用于低功耗线性化 RTD 电路的典型应用电路