CEVA凭SensPro Sensor Hub DSP协助客户有效实现传感器融合

发布者:Xinmei最新更新时间:2022-03-30 来源: 爱集微 关键字:DSP 手机看文章 扫描二维码
随时随地手机看文章

众所周知,传感器在配合使用时效果最佳。对于同步定位与地图构建 (SLAM) 来说更是如此。SLAM 在 AR/VR 领域扮演着重要的角色,可以根据用户的姿势调整场景,避免无人机或机器人这样的应用在使用过程中的碰撞,用途广泛。SLAM市场预计到2023年将增长至4.65亿美元,年复合增长率为36%,为大多数开发者提供了绝佳机遇。在手机上将 SLAM 应用于室内导航可能会在规模庞大的基础平台市场中占据主导地位。GPS 不能在室内工作,基于信标的导航只能在具有信标基础设施的区域工作。而 SLAM 则可以在任何提供室内地图的地方工作,符合大多数楼宇自控管理系统的低成本期望。将该区域的场景与用户在该区域行走时的姿势和运动融合到了一起,使得在此处应用 SLAM 成为了应用传感器融合的绝佳示例。

开箱即用的方案

我将首先描述如何在我们的 CEVA SensPro Sensor Hub DSP 硬件的基础上,结合我们的 SLAM 和 MotionEngine 软件模块,集成并测试这个解决方案,以调节和管理运动输入。我们需要一个摄像头和惯性测量传感器,一个 CPU 和 DSP 。我们将 CPU 用来承载MotionEngine 和 SLAM 框架,并用 DSP 来执行 SLAM 算法来减轻任务负担。

为了更简单的解释,我将首先从 OrbSLAM 算法开始,这是一种广泛使用的执行开放源代码的算法。它将执行三个主要功能。跟踪做(视觉的)逐帧注册,并在当前地图上定位新的帧。构图将点添加到地图,并通过创建和求解一组复杂的线性方程进行局部优化。循环闭合通过在返回到曾经到达过的点上进行修正来进行全局优化。这是通过求解一组大型线性方程式来实现的。

其中一些功能可以非常有效地运行在CPU内核的主机应用程序内,同时还有你的应用程序所特有的控制和管理功能。某些功能必须在 DSP 处理器中运行才实用或获得竞争优势。例如,跟踪在可能在CPU 中管理 1 帧/秒 (fps),其中特征提取占算法运行时间的 40%。相比之下,DSP 实现可管理 30帧/秒 (fps),这种分辨率对于视频和 IMU 之间的细粒度关联非常重要。

这种优势的原因很容易理解。DSP 实现提供了非常高的并行处理能力,提供定点数/浮点数支持,这在跟踪和求解线性方程中至关重要。此外,还有一个特殊指令集来加速特征提取。主机和 DSP 之间的简单链接可以将 DSP 看作加速器,从而将密集型计算分流到 SensPro。

视觉融合 IMU

我们提供了两个关键组件:使用 CEVA-SLAM SDK 产品的视觉SLAM 和 CEVA MotionEngine 软件,该软件可以非常精确地处理六个自由度中的三个自由度的IMU输入。IMU 和视频信息的融合取决于迭代算法,该算法通常是根据应用要求定制的。最后一步将视觉数据与运动数据联系起来,以生成精确的定位和映射估计值。  CEVA 提供成熟的视觉SLAM 和 IMU MotionEngine软件作为开发融合算法的坚实基础。构成这样的算法密集型功能将在DSP上运行最快,比如我们的SensPro2平台。

测试原型

构建原型平台后,将如何去测试?有多个 SLAM 数据集可用。Kitti 就是其中一个,EuroC 是另一个。在下面的例子中,我展示了 OpenCV 的实现与我们的 CEVA-SLAM SDK 实现的精度比较。您会想对您的产品做类似的分析。

融合您自己的方法

正如我前面提到的,构建 SLAM 平台有许多方法。也许您不想从 OrbSLAM 开始,或者您想融合自研的算法或是差异化的算法。SensPro Sensor Hub DSP 均可支持。


关键字:DSP 引用地址:CEVA凭SensPro Sensor Hub DSP协助客户有效实现传感器融合

上一篇:长江存储打入苹果供应链;孟晚舟称华为盈利能力在增强
下一篇:国产首台自主研发的8LP双天车系统SORTER在终端客户成功过认证

推荐阅读最新更新时间:2024-11-08 11:23

磁悬浮轴承控制器中MAX115与DSP的接口设计
引言   在五自由度主动磁悬浮轴承控制系统中,采用由工控PC+DSP控制器的架构是一种较好的方法,而DSP核心控制器则是磁悬浮轴承控制系统中非常重要的一部分,对主轴位置信号的精确采集是DSP控制器的首要任务。在本控制器中采用MAX115对主轴位置的模拟信号进行采集。 图1 磁悬浮轴承DSP控制器的结构简图 图2 MAX115与TMS320F240 DSP之间的接口电路图 磁悬浮控制器中的ADC选择   在磁悬浮主轴控制器的设计中,对主轴位置的测量是至关重要的。位置传感器的信号经过适当的信号调理电路处理后被传送到A/D采样通道,ADC把得到的模拟信号转换成相应的数字信号,芯片采样的精度和分辨率以及采样转换时间是非常重要
[工业控制]
DSP重复控制技术在逆变电源系统中的应用
本文提出一种 DSP 重复控制的控制方案,利用重复控制器来跟踪周期性参考指令信号,减小输出电压谐波,同时电流环控制改善系统的动态性能。并根据该控制方案,设计和调试了一台基于 DSP TMS320IF2407A控制的单相1kW 逆变器 ,仿真和实验结果均验证了该方案的良好性能。 重复控制的基本理论 重复控制是基于内模原理的一种控制思想。它的内模数学模型描述的是周期性的信号,因而使得闭环控制系统能够无静差地跟踪周期信号。单一频率的正弦波是典型的周期信号,它的数学模型为 DSP 重复控制技术在 逆变电源 系统中的应用" / 那么只要在控制器前向通道串联上与输入同频率的正弦信号,就可以实现系统的无静差跟踪。重复控制也多
[嵌入式]
<font color='red'>DSP</font>重复控制技术在逆变电源系统中的应用
一种基于ADSP-BF537的无线视频传输方案
   0 引 言   无线通信技术和视频压缩技术的迅速发展,使得无线视频传输成为人们研究的热点。无线视频传输具有数据量大,实时性要求高,无线信道资源有限的特点。新一代的视频压缩标准H.264结合专用视频DSF芯片可以满足信源编码的要求。而处理数据量大,速度快,运算结构相对简单的FPGA适用于信道编码。基于以上考虑,设计了一个无线视频传输系统,并以发射端ADSP-BF537作为控制器,配置FPGA和进行数据通信。    1 总体结构实现方案   系统硬件的实现方案如下:   发送端由摄像机、专用视频编码芯片、控制模块、基带模块、射频模块( RF )等部分组成。接收端由射频接收模块、控制模块、基站模块、专用视频解码芯片等部分组
[嵌入式]
基于DSP和CPLD的宽带信号源的设计
   1 引言   信号源是雷达系统的重要组成部分。雷达系统常常要求信号源稳定、可靠、易于实现、具有预失真功能,信号的产生及信号参数的改变简单、灵活。本文采用DSP和CPLD来设计信号源的控制部分,一方面能利用DSP软件控制的灵活性,另一方面又能利用CPLD硬件上的高速、高集成度和可编程性。使用这种方法可以充分利用软件支持来生成和加载任意波形数据,并能方便地实现对信号参数的控制和对波形数据的随意修改,同时又能保证信号产生的高速、灵活可控。       2 系统结构   采用波形存储直读法,即通过对存储的波形采样数据进行数模变换,直接生成模拟信号的一种方法。图1为信号源的系统结构。本信号源可工作于联机和脱机两种方式。联机工作
[应用]
具有多个电压轨的FPGA和DSP电源设计实例
大多数电子产品由于包含一个或多个FPGA或DSP数字处理芯片而需要提供多个电源轨。在为这些数字IC供电时,有多种方案可以选择,也有许多潜在的陷阱需要避免。在“具有多个电压轨的FPGA和DSP应用的电源设计方法”一文中,作者提出了多电压轨FPGA和DSP应用的电源解决方案,讨论了功率预算和排序选择等在系统水平所关注的问题。本文将着重讨论如何在各种类型的点到负载点(POL)直流/直流转换器之间做出选择,并讨论如何设计这些转换器才能满足直流精度以及启动和暂态要求。 降压直流/直流转换器拓扑的回顾 降压POL直流/直流转换器可以分成两类:线性稳压器和基于电感的开关稳压器。图1显示了线性稳压器的功能图。 线性稳压器的主要优点是芯
[电源管理]
空间太阳望远镜图像锁定系统中的应用
  空间太阳望远镜项目是我国太阳物理学家为了实现对太阳的高分辨率观测而提出的科学计划。它可以得到空间分辨率为0.1"的向量磁图和0.5"的X射线图像,实现这样高的观测精度的前提就是采用高精度的姿态控制系统和高精度的相关跟踪系统。从整个系统来看,相关运算所需的时间成为限制系统性能能否提高的一个重要环节。   目前,国际国内相关计算比较通用的实现方法有两种:用高速DSP或者专用(FFT)处理芯片。用DSP完成相关计算(关键是FFT)受到航天级DSP性能的限制,现有的航天级DSP(如ADSP21020)计算一个32×32点8bit的二维FFT所用时间需要1.5ms以上,远远不能满足系统设计要求;而现有的FFT处理芯片在处理速度、系统兼
[嵌入式]
空间太阳望远镜图像锁定系统中的应用
基于DSP的彩色TFT-LCD数字图像显示技术研究
  随着计算机技术的飞速发展,嵌入式图像系统广泛应用于办公设备、制造和流程设计、医疗、监控、卫生设备、交通运输、通信、金融银行系统和各种信息家电中。所谓嵌入式图像系统,指以图像应用为中心,以计算机技术为基础,软件、硬件可裁减,对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。嵌入式图像系统对图像显示技术提出了各种严格要求,必须选择合适的显示器,设计出合理的显示控制方法。   系统硬件设计   本系统要构建一个嵌入式、高速、低功耗、低成本的图像显示硬件平台,要求能真彩显示静态或动态彩色图像。为达到真彩和无拖影的显示动态图像,同时兼顾低功耗的要求,采用SHARP(夏普)公司的LQ057Q3DC02彩色TFT-LCD作为显示
[嵌入式]
在RT-Thread studio中为STM32系列开启DSP支持
其实文档中心有对应的lib文件添加说明,我自己摸索了很久才搞定,本篇文章算是自己摸索使用DSP成功后的一个总结吧。 下面以自用的STM32L4系列开启DSP作为示例说明: 第一步,打开构建选项 第二步,加入DSP使用时需要的编译宏定义 这一步添加的宏定义根据芯片型号来定,具体需要添加什么请自行百度,keil里面也需要添加这些宏,是以“,”分割的形式表达的,百度到后自行转换一下 第三步,添加lib文件 这一步按照官方文档的操作说明就可以了,注意DSP的库文件位置 第四步,添加头文件 从一个任意包含DSP库keil工程里面找到arm_math.h文件添加进你的工程里面,然后就可以任意调用DSP库的函数啦。
[单片机]
在RT-Thread studio中为STM32系列开启<font color='red'>DSP</font>支持
小广播
最新手机便携文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved