配电变压器380 V 低压侧单相接地保护的配置探讨

最新更新时间:2012-07-28来源: 维库电子关键字:变压器  单相接地  配置探讨 手机看文章 扫描二维码
随时随地手机看文章

  随着经济发展的加速,10 /0. 4 kV 配电变压器的应用也越来越广泛,对其的保护一般习惯性装设速断保护、过流保护、高压侧单相接地报警,对于低压侧单相接地保护,有些企业一概配置低压侧中性点零序电流互感器和专用单相接地保护,有些单位又一概不单独配置专用低压单相接地保护,而用高压侧三相过电流保护来兼顾,到底应该怎样配置才更合理,本文对此进行分析说明。

  1 规程要求

  由GBT 50062—2008 《电力装置的继电保护和自动装置设计规范》对配电变压器低压侧单相接地保护的要求可知,低压侧中性点直接接地的变压器需要装设单相接地保护,保护的具体实现方法需要根据项目实际情况具体分析。

  低压侧中性点直接接地的变压器,不论是星型- 星型接线还是三角- 星型接线,首推用高压侧三相式过电流保护来兼低压侧单相接地保护,原因有:① 高压侧三相式过电流保护在灵敏度满足要求的前提下,既起到保护变压器高压侧过电流的保护作用,同时完成了变压器低压侧单相接地保护的功能,大大节约了整个变压器的运行成本,可以获得较好的经济效益;② 考虑到供电半径和符合分布情况,这类变压器多布置在紧邻低压负荷中心,而相对远离高压开关柜,有些项目甚至距离高压开关柜几百m 的距离,如果用低压侧中性点安装零序保护来实现,该保护的安装位置有困难,跳闸出口接线拉得比较长,对变压器安全运行带来隐患,不利于变压器的经济合理运行。

  2 理论分析

  不同接线方式变压器低压侧单相接地短路分析。为简化计算,考虑到高压系统到变压器的电缆阻抗对低压侧单相接地短路分析影响不大,本文直接将高压电缆部分的阻抗归算到高压系统阻抗中。

  对于三相短路,由于已经假定系统是对称的,只有正序分量,因此,不需要特别强调序阻抗的概念;对于单相接地短路,必须提出序阻抗和相保阻抗的概念。由于短路点离发电机较远,可认为所有元件的负序阻抗等于正序阻抗,而零序阻抗与正序、负序阻抗不同,必须单独分计算。对于零序阻抗,星型- 星型接线和三角- 星型接线的配电变压器,当低压侧发生单相接地短路故障时,零序电流不能在变压器高压绕组流通,高压侧对于零序电流相当于开路状态,故在计算单相接地短路电流时视若无此阻抗。

  本文考虑配电变压器低压侧母线单相接地短路,因此,需要计算以下三部分阻抗。

  (1) 高压系统。高压系统按如下估算:


  式中Ss———变压器高压侧系统短路容量,MVA

  Un———变压器低压侧标称电压,0. 38 kV

  c———电压系数,计算三相短路电流时取1. 05,计算单相短路电流时取1. 0

  Zs———归算到变压器低压侧的高压系统阻抗,mΩ

  Xs———归算到变压器低压侧的高压系统电抗,mΩ

  Rs———归算到变压器低压侧的高压系统电阻,mΩ

  对于TN 接地系统的相保电阻和相保电抗分别为


  式中Xphp. s———归算到变压器低压侧的高压系统电抗,mΩ

  Rphp. s———归算到变压器低压侧的高压系统电阻,mΩ

  (2) 配电变压器。正序阻抗的计算如下



  式中ΔP———变压器短路损耗,kW

  Ur———额定线电压,kV

  SrT———变压器额定容量,MVA

  ud%———变压器阻抗电压百分比

  变压器的负序阻抗等于正序阻抗。Y,yn0 连接的变压器的零序阻抗比正序阻抗大得多,其值由制造厂通过测试提供;D,yn11 连接的变压器的零序阻抗若无测试数据时,可取其值等于正序阻抗值。

  Y,yn0 连接变压器的相保电阻和相保电抗分别为:


  D,yn11 连接变压器的相保电阻和相保电抗为


  (3) 低压母线。导线电阻为


  式中Rθ———导线温度为θ ℃时的直流电阻,Rθ=ρθCjL/A

  ρθ———导线温度为θ ℃时的电阻率,ρθ =ρ20[1 + α(θ - 20)]

  Cj———绞入系数,单股导线为1,多股导线为1. 02

  ρ20———导线温度为20 ℃时的电阻率,铝线芯为2. 82 μΩ · μm,铜线芯为1. 722 μΩ·μm

  α———电阻温度系数,铜、铝都取0. 004

  θ———导线实际工作温度,℃

  kjf———集肤效应系数,查表获得

  klj———临近效应系数,母线取1. 03

  为了简化计算,计算导线电抗时,忽略线路容抗,只计算线路感抗。

  对于50 Hz 系统,母线的感抗计算公式如下:


  式中Dj———几何均距,cm

  b———母线厚度,cm

  h———母线宽度,cm

  以上为线路、母线的线路阻抗( 正序、负序)的计算方法,对于相线、保护线的零序电阻和零序电抗的计算方法与正、负序电阻、电抗计算方法相同,只是在计算相线零序电抗X(0)ph和保护线零序电抗X(0)p时几何均距Dj改用D0代替。D0 =为相线L1、L2、L3中心至保护线PE 或PEN 线中心的距离。

  对于单相接地短路,母线的相保电阻和相保电抗分别为:


  3 计算示例

  下面由一个计算实例来说明变压器低压侧单相接地保护的配置原则和特点。

  某车间变电所变压器为SCB9 - 1 000 kVA,10 /0. 4 kV,ud = 6%,ΔPk = 7. 6 kW,过负荷系数为3,在变压器高压侧系统短路容量S smin =200 MVA,变压器的接线形式分别为D,yn11 和Y,yn0,低压380 V 母线平行竖放,母线间距350mm,中性线距边母线200 mm,其他参数见图中如图1 所示,以下分别进行变压器低压母线处发生单相接地短路保护的配置及灵敏度的计算。


图1 变电器示意图

  根据以上参数,由式(1) ~ (5)计算得到系统的相电阻Rs、相电抗Xs、相保电阻Rphps、相保电抗Xphps;由式(6) ~ (8)、(11)、(12)计算得到变压器的相电阻RT、相电抗XT、D,yn11 连接型式的相保电阻RphpT、相保电抗XphpT,对于Y,yn0 连接的变压器的零序阻抗比正序阻抗大得多,其值由制造厂通过测试提供,因此,其相保电阻RphpT、相保电抗XphpT根据厂家提供数据查表得出;由式(13) ~(16)计算得到低压母线20 ℃时的相电阻Rm、相电抗Xm、相保电阻Rphpm、相保电抗Xphpm,计算结果如表1 所示。

表1 20 ℃时低压母线参数表


  根据表1 数据计算得变压器低压侧母线故障的阻抗、短路电流、过电流保护和低压单相接地保护的数值如表2 所示。

  由示例分析可得,对于相同容量、相同电压比和相同百分比的电抗,只是接线型式不一样的配电变压器,高压侧的短路电流和保护形式、定值是没有差别的,计算完全一样。D,yn11 接线的变压器和Y,yn0 接线的变压器主要差别在于变压器的零序阻抗。Y,yn0 接线的变压器由于与低压系统有电的联系,其零序阻抗值远远高于正序阻抗,从而导致相保电阻和相保电抗值也很大;而D,yn11 接线变压器的零序阻抗值与正序阻抗差别不大,估算时可以取值等于正序阻抗值,对应的相保电阻和相保电抗值与相电阻、相电抗值相等。

表2 低压侧母线故障计算数值表



  由表2 可以看出:D,yn11 接线变压器的相保电阻RphpT = RT = 1. 22 mΩ, 相保电抗XphpT = XT = 9. 52 mΩ;而Y,yn0 接线变压器的相保电阻RphpT = 3. 39 mΩ,相电阻RT = 1. 22 mΩ,相保电抗XphpT = 42. 71 mΩ,相电抗XT = 9. 52 mΩ,正是这一点导致D,yn11 接线和Y,yn0 接线变压器的380 V 低压母线单相接地故障电流的很大不同。D,yn11 接线I22k1 = 1 99* A;Y,yn0 接线I22k1 = 4 862 A。D,yn11 接线的低压母线单相接地故障电流较大,用高压侧三相式过电流保护兼做低压侧中性点单相接地保护的灵敏度完全符合要求Ksen = 1. 81 > 1. 5,不需要单独配置专用的中性点电流互感器和保护继电器;由于Y,yn0 接线的低压母线单相接地故障电流小,致使高压侧三相过电流保护兼低压侧单相接地保护功能的灵敏度不满足> 1. 5(Ksen = 0. 51),因此,需要单独配置低压侧单相接地保护。

  4 结语

  通过以上计算实例分析:对于D,yn11 接线形式的变压器,可利用高压侧三相过电流保护兼作低压侧单相接地故障保护,灵敏度完全满足>1. 5 的要求,不需要单独配置专用的中性点电流互感器和保护继电器,节省了设备配置和接线,同时也减少了运行成本;对于Y,yn0 接线的变压器,由于变压器相保阻抗很大,导致低压单相接地故障短路电流较小,利用高压侧三相过电流保护兼作低压侧单相接地故障保护的灵敏度不满足>1. 5 的要求,必须单独在低压侧配置单相接地保护,增加了设备、接线,同时加大了运营维护成本。D,yn11 和Y,yn0 两种接线型式的10 /0. 4kV配电变压器在工业和民用建筑领域应用都非常广泛,随着用电负荷的增加,低压侧单相接地故障的影响增大,结合这几年电子类负荷的增加较快,产生的谐波影响也加大,虽然就地进行了一些补偿,但对系统的影响还是不可小视,根据D,yn11 和Y,yn0 两种接线型式的10 /0. 4 kV 配电变压器适用场合,结合本文的分析,建议在没有特别要求接线型式的场所,选用D,yn11 接线型式的配电变压器,用高压侧三相过电流保护兼作低压侧单相接地保护,从而提高配电变压器保护的实用性和经济性,也提高了变压器的运行效率,做到安全、有效、合理。

关键字:变压器  单相接地  配置探讨 编辑:探路者 引用地址:配电变压器380 V 低压侧单相接地保护的配置探讨

上一篇:电压监测装置发挥多重功用
下一篇:大电流式LDO电压调整器XC6220

推荐阅读最新更新时间:2023-10-17 15:00

自耦变压器的优缺点分析
自耦变压器与普通的双绕组变压器比较有以下优点: 1)消耗材料少,成本低。因为变压器所用硅钢片和铜线的量是和绕组的额定感应电势和额定电流有关,也即和绕组的容量有关,自耦变压器绕组容量降低,所耗材料也减少,成本也低。 2)损耗少效益高。由于铜线和硅钢片用量减少,在同样的电流密度及磁通密度时,自耦变压器的铜损和铁损都比双绕组变压器减少,因此效益较高。 3)便于运输和安装。因为它比同容量的双绕组变压器重量轻,尺寸小,占地面积小。 4)提高了变压器的极限制造容量。变压器的极限制造容量一般受运输条件的限制,在相同的运输条件的限制,在相同的运输条件下,自耦变压器容量可比双绕组变压器制造大一些。 在 电力 系统中采用
[电源管理]
单端反激式开关电源变压器设计程序
只要输入条件项目参数,电感和圈数可自动计算出来,然后在根据计算的参数作为参考调整。 条件项目: 数值 单位 数值 单位 输入AC电压最小 165.0 V 占空比 输入AC电压最大 235.0 V Krp取值 0.6 工作频率 50000.0 HZ 效率 0.8 初级反射电压 135.0 V Bm 0.2 T 输出直流电压1 24.0 V 负载电流1 2.0 A 输出直流电压2 24.0 V 负载电流2 2.0 A 输出直流电压3 24.0 V 负载电流3 0.1 A 输出直流电压4 5.0 V 负载电流4 0.5 A 反馈电压 16.0 V 负载电流5 A 输出直流功率 100.9 w 电流密度 400.0 A/cm2
[电源管理]
单端反激式开关电源<font color='red'>变压器</font>设计程序
用三个元件做的逆变器(如何做12v转220v逆变器)
今天给大家分享的这个逆变器的方法,是最简单的一篇,成本也是最低的一篇。之前有很多逆变器的制作方法,当然我们希望越简单越好,用到的元件越少越好,成本越低越好,说的越明白越好。 逆变器顾名思义,它是正常变压器的反向工作状态,我们用到的最多的是把220v转化为12v,而很少从12v转化为220v,因为我们使用的电量的来源主要来自电网,所以我们使用的电都是从电网电来的,而很少把我们所使用的电变成电网的电,那我们做这个逆变器还有什么意义呢?你可以这样理解,一个是电子爱好者的热情,他们天生就喜欢制作,再一个我们以备急用,例如万一电网停止供电了,我们可以用逆变器转化成220v,这样不影响我们家里的正常供电,再一个随着太阳能板的普及我们可能总
[电源管理]
压电陶瓷变压器在开关电源的应用分析
    随着电子技术的发展,各种便携式电子设备小型化、轻型化要求开关电源需满足轻、小、薄等要求。而在开关电源中,传统电磁式变压器和电感的体积和重量是整个电源的主要部分。尽管目前出现了平面电磁变压器,或能够集成PCB板上的小型变压器,在一定程度上能实现减小高度和尺寸的目的,但仍然难以满足轻、小、薄的要求。陶瓷变压器是基于电-机-电的工作机理,不存在绕组和磁芯,可以做的很薄,使电源轻、小、薄成为可能。与基于其电-磁-电能量转换机理的电磁变压器相比,拥有许多优势,如没有绕组线圈,不会受到电磁干扰和产生电磁干扰,压电陶瓷变压器制造可以完全实现自动化,成本低,绝缘等级高,且容易获得高的电压传输比,非常适合小功率高压输出场合。 1 压电陶瓷
[电源管理]
压电陶瓷<font color='red'>变压器</font>在开关电源的应用分析
电子变压器驱动LED-MR16射灯电源的问题及其BP1361解决方案
概述 随着LED技术的发展,带来了照明界的一场革命。尤其是1W和3W大功率LED技术的成熟和成本的降低,LED在E27、GU10、PAR灯和MR16等领域广泛应用。然而,在电子变压器驱动的3*1W的LED-MR16应用中,也存在一些问题。本文就电子变压器驱动3*1W的LED-MR16恒流驱动电源问题进行系统分析,并介绍BP1361构成的B2(Buck-Boost)解决方案。 电子变压器在驱动LED时的工作问题 为了更多了解电子变压器驱动LED的MR16射灯,这里先介绍电子变压器(以市场上买的飞利浦电子变压器为例)的工作原理以及在驱动MR16卤素灯的工作情况。图1为目前市场最为常用的电子变压器的原理
[电源管理]
电子<font color='red'>变压器</font>驱动LED-MR16射灯电源的问题及其BP1361解决方案
MAX774 用变压器控制电路为SLIC应用提供电源
变压器利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。
[模拟电子]
高分子PTC 热敏电阻在工频变压器中的应用概述(图)
 变压器被广泛的用于多种电子产品中,其功能主要有:电压变换;阻抗变换;隔离;稳定电压(磁饱和变压器)等。变压器损坏有两种常见的原因:初级过压和次级短路。这两种故障都会使变压器的“铜损”( 电流流过线圈时的热消耗)和“铁损”(由“涡流”所产生的损耗)在短时间内剧增,并导致线圈温度升高;如不及时处理,将会使线圈绝缘性降低,甚至使变压器烧毁。如果变压器出现了以上故障而没有及时的被切断,则电路中关联的部分元器件也会相应出现过载或超负荷工作的情况。严重时会因为过热而导致失效,使局部电路损毁。   人们通常在初级线路中串联热熔丝(温度保险丝)或在次级线路中串联电熔丝(电流保险丝)来保护变压器。这一方案的最大缺点在于它使用了一次性的保护元件。如
[电源管理]
高分子PTC 热敏电阻在工频<font color='red'>变压器</font>中的应用概述(图)
车载OBC和DCDC对电感器和电子变压器的技术要求
随着新能源电动汽车在电源系统上的要求越来越高,车载充电机(On-Board Charger;OBC)、DCDC变换器(DCDC Converter)和高压配电单元集成逐步成为车载电源的主流方案。 作为在全球拥有400余家合作伙伴的知名车载电源供应商,迪龙新能源科技河北有限公司率先向市场推出车载电源集成产品,在产品集成化设计上先人一步。 公司目前有车载电源二合一集成方案、三合一集成方案和四合一集成方案,其中二合一高效集成了OBC和DCDC,三合一高效集成了OBC、DCDC和高压配电单元。 该系列集成产品采用了国际先进的全数字控制、有源功率因数校正和LLC谐振等技术,使得产品在转换效率、功率密度、小型化、智能化、集成化和高性价
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved