提高频谱仪的幅度测量精度方法

发布者:本人在最新更新时间:2011-01-27 来源: 互联网关键字:频谱仪  幅度测量  测量精度  安捷伦科技 手机看文章 扫描二维码
随时随地手机看文章

扫频式超外差频谱仪通过混频器把输入信号变换到中频(IF),在中频进行放大、滤波和检波处理。预选滤波器(有时是低通滤波器)主要用于滤除镜像频率的信号,频谱仪屏幕上显示的参考电平和中频放大器的增益有关,该放大器只是调节信号在屏幕上显示的垂直位置,不影响输入衰减器端的电平。屏幕的横轴是频率,纵轴是测得的信号电平,一般以线形的电压Volt或对数形式的dB表示。

频谱仪的幅度精确度通常有绝对精度和相对精度两种。绝对精度指的是信号的功率电平精度,单位为dBm;而相对精度指的是测量两个信号之间差值的精度,其中的一个信号作为另一个的参考,例如测量谐波信号的时候,一般测量谐波和基波的功率比。通过测量一个幅度和频率非常准确的校准源,以上两种精度都可以得到提高。

频谱仪中前端的信号处理元件如放大器、滤波器和混频器都是幅度测量误差的来源。在许多频谱仪设计中,采用更好的元件可以提高精度。安捷伦科技的高性能频谱仪PSA系列(如图2),采用了一整套数字中频滤波器,可以避免模拟中频滤波器的幅度变化。但是仅仅提高整个信号处理链路中的部分元件,还不足以消除所有的误差来源,更好的了解频谱仪各个模块之间的相互作用,有助于减小误差,提高幅度测量精度。

幅度测量的精度为什么这么重要呢?例如有些通讯标准要求调制的载波功率不能超过某个特定的值,这对绝对精度提出了要求;过多的谐波或杂散信号会对其他的通信系统产生干扰,这对相对精度也提出了要求,这些系统中的放大器必须满足特定的线形度要求,以保证不会产生较高的谐波和杂散信号,对于这些系统中的滤波器必须同时测量通带和阻带特性。

频谱各个元件之间的相互作用是误差的来源之一。表1列举了部分幅度测量误差的来源。大多数仪器厂商在其产品的指标中都会同时注明绝对和相对不确定度。因为相对不确定度对两种测量都有影响,因此本文将重点讨论相对不确定度。

频谱仪的频率响应平坦度是幅度误差的主要来源之一。该指标描述的是相对幅度不确定度和频率的函数关系,受输入衰减器、混频器、本振幅度和输入滤波器的频响平坦度的影响。频响的不确定度一般有绝对和相对两种表示方法。相对不确定度描述的是整个频率范围内,相对于中央频点的最大可能幅度不确定度,一般比相同频段的绝对不确定度要小。但是为了得到某个带内相对幅度测量的频响不确定度,相对频响指标值还要乘二,以反映整个带内频响的峰-峰值,这会导致其通常比绝对频响指标还要高。

频谱仪通常采用YIG调谐滤波器作为预选滤波器,YIG滤波器也会影响频谱仪的频响特性。该滤波器必须精确的调谐和对准,以避免引入额外的频响变化,由于本振的扫描速度有限,因此YIG滤波器还要加上一些延迟和补偿,以保证其中心频率和本振同步。频谱仪的前端通常还加一个低通滤波器,在测量YIG 预选器不能达到的低端频率的信号时(通常2GHz以下),该低通滤波器用于滤除高频信号。尽管该滤波器也会影响整体的频响特性,但是其影响比YIG滤波器小很多。

由于部分频谱仪采用谐波混频技术,仪器内部实际上有很多个混频频段,每个频段都有特定的频响,因此在各个频段之间切换的时候也会引入不确定度。例如PSA系列到26.5GHz的E4440A频谱仪,内部分五个混频频段,分别为:3 Hz 到3 GHz, 2.85到 6.6 GHz, 6.2到13.2 GHz, 12.8到19.2 GHz, 18.7到26.5 GHz。当设置的频率跨度(Span)超过两个混频频段时,仪器会自动切换内部混频频段,从而引入幅度不确定度。当测量两个处于不同混频频段的信号的相对值时,总的不确定度等于两个频段的频响之和加上频带切换不确定度。如果指标中没有注明频带切换的不确定度,可以用以校准源为参考的绝对频响参数,来确定各个频段的总测量不确定度(见表1)。

频谱仪中另一个不确定度的来源是量程的可信度。当测量两个位于不同垂直位置(量程)的信号时,不同量程的可信度就会影响结果。检波器和ADC的线性度、对数/线形放大器的线形度都会影响量程的可信度。对于大部分对数放大器而言,其线形度随着输入点评的降低而恶化。

对于幅度接近的两个信号,量程的不确定约为零点几dB,对于幅度相差很大的信号,这个不确定度可达2dB。典型的量程可信度指标为:±0.4 dB/4 dB其累积最大值±1.0 dB。其中±0.4 dB/4 dB这个指标对于幅度相近的信号适用,而累积指标对于幅度相差较大的信号适用。

当频谱仪要测量不同电平的信号时,其灵活度可以通过调节参考电平来实现,但是调节参考电平也会引入不确定度。参考电通和输入衰减器和中频增益有关,其范围可以从显示平均底噪(DANL)调节到其能承受的最大输入电平。调节参考电平实际上就是调节中频放大器的增益,中频放大器本身(和所有的放大器一样)其增益都会随着幅度和频率变化。因此测试过程中,任何参考电平的调节都会引入不确定度。

参考电平通常通过仪器内部的标准参考源(当然也可以用外部源)进行校准。和很多功率计内置的标准源类似,PSA系列频谱仪内置一个频率为 50MHz,功率为-25dBm的标准源,其幅度精度为±0.24 dB(而ESA-E系列通用频谱仪的内置标准源的幅度和频率和PSA一样,但是精度为±0.34 dB)。因此当设置参考电平为-25dBm、衰减器为10dB的时候,频谱仪的测量精度最高,因为频谱仪参考电平相关参数就是在这个状态下进行校准的。

参考电平不确定度这个指标通常这样给出:如±0.3 dB 在-20 dBm,随着参考电平偏离-20dBm,这个指标会有一定增大。需要注意的是不同仪器的指标里对“参考电平不确定度”可能会用不同的名词。例如,安捷伦科技的8560系列便携式频谱仪指标中用“中频增益不确定度”这个词,而PSA系列则用“参考电平精度”这个词。

由于射频微波衰减器的衰减值会随频率变化(有时甚至随温度变化),因此步进衰减器的精度也是频率的函数。另外,参考电平校准时的衰减器设置如果和实际测量的设置不一样,也会引入不确定度。大多数衰减器的精度都是随着频率的升高而恶化的,衰减器切换的典型不确定度为±1 dB。

由于模拟滤波器的频响不是很理想,不同带宽的滤波器之间的输出幅度特性会有较大的差别。因此测量时转换分辨率带宽滤波器也会引入不确定度,特别是使用模拟滤波器时。而数字滤波器在这方面的表现就很好,但是数字滤波器的实现成本更高,因此在ESA系列中档频谱仪中,数字中频滤波器只做到 300Hz,更高带宽的滤波器模拟的。

而高端的PSA系列的中频处理部分则采用全数字设计,还包含FFT分析和数字是扫频接收机。该设计不但提高了幅度测量精度,而且还提高了扫描速度。

改变屏幕显示每一格的尺度也会影响测量精度。例如把每格10dB的尺度改为每格1dB,这时频谱仪的对数/线形放大器的特性会有变化,这也会引入不确定度。当然在测量中保持刻度不变,可以避免这种误差。典型的线形-对数转换不确定度在参考电平位置为±0.25 dB,但是如果频谱仪此时显示的是已经保存的轨迹,这个不确定度对测量就没有影响。

总的相对幅度测量不确定度受上述所有因素的叠加影响。有一些误差来源于改变设置,如果衰减器、分辨率带宽、参考电平等设置不变,相关的所有不确定度就可以排除,总的不确定度就可以减至最小。例如PSA系列频谱仪由于采用全数字分辨率带宽滤波器,因此在切换分辨率带宽时,不会引入额外的误差,其精度远比采用模拟滤波器的频谱仪高。

为了提高相对幅度测量的精度,最简单的方法是在测量的过程中不要改变设置:不要改变分辨率滤波器设置,但是像PSA这样采用全数字滤波器的,可以改变分辨率带宽滤波器;参考电平校准和实际测量时,保证采用同样的衰减器设置;测试过程中不要改变每一格的尺度。

连接频谱仪和被测件之间的信号传输网络会影响被测信号的特性,因此这些网络的特性也必须被补偿掉。通常采用频谱仪内置的幅度修正功能,加上测试信号源和功率计,可以测出该网络的频率响应特性,把测量的结果做成一个表格存在频谱仪内部,测量时用表格中的数据进行修正即可。对于某些测试中必须用的天线、电缆等附件,也可以用上述的办法进行补偿。并且仪器可以存储很多组数据,以应对不同的设置。

下面是一个典型的计算不确定度的例子,本例中被测信号的频率为1GHz,幅度为-20dBm。为了对比不同仪器的测试精度,选用了高端的PSA系列 4440A和中端的ESA-E系列E4402A频谱仪。各项设置均相同:衰减器为10dB,频率跨度为20KHz,参考电平为-10dBm,扫描时间设为自动,分辨率带宽为10KHz,视频带宽为1KHz。环境温度为室温(+20 到 +30°C),E4440A PSA(数字中频滤波器)的标称绝对幅度不确定度为±0.24 dB,而ESA(模拟中频滤波器)的指标为±0.54 dB。上述的两个数字分别加上两款频谱仪的绝对频率响应,其和就是最坏情况下的不确定度。对于更高频率信号,特别是谐波测试时,由于仪器要切换内部混频频段,其不确定度会更大。

采用数字中频滤波器可以有效地提高频谱仪的测量精度。测量过程中,合理的仪器设置也可以保证测试的结果能满足仪器给出的最佳精度。

关键字:频谱仪  幅度测量  测量精度  安捷伦科技 引用地址:提高频谱仪的幅度测量精度方法

上一篇:频谱分析仪的在时域中应用
下一篇:快速设置的GaAs pHEMT微波开关

推荐阅读最新更新时间:2024-05-07 16:10

示波器测量准确度问题探讨及高精度示波器的应用
——力科第三届“精品工程”系列网络视频讲座会系列之四 时间:2011年7月26日 10:00 - 12:00 举办网址: http://webcast.ednchina.com/529/Content.aspx 本次研讨会我们将讨论影响示波器测量准确度的一系列因素:半导体器件本身的影响因素如DC增益,偏置,非线性度,频响曲线的线性度,通道之间的匹配,量化误差等; 测试环境特别是探头的因素,如探头的地线,探头的负载效应,探头摆放的位置,地环路的干扰等以及算法本身的影响因素。这些影响因素中,最关键的也是最大的一个影响因素是量化误差。 力科的WaveRunner HRO 6Zi 12位ADC的高精度示波器能够减小量化误差的影响,提供更
[测试测量]
频谱仪和示波器有什么区别
频谱仪和示波器都是一种常用的电子测量仪器,被广泛的应用于多个行业当中。频谱仪和示波器之间也是有很大的不同的,我们对于频谱仪和示波器的区别都了解过吗?这对于用户的选择也是很重要的,今天小编就来为大家介绍一下频谱仪和示波器的区别吧。 首先,我们从实时带宽、动态范围、灵敏度和功率测量准确度四个方面比较了示波器和频谱仪的分析性能指标的区别。 1、实时带宽 对于示波器来说,带宽通常是其测量频率范围。而频谱仪则有中频带宽、分辨带宽等带宽定义。这里,我们以能对信号进行实时分析的实时带宽作为讨论对象。 对于频谱仪来说,末级模拟中频的带宽通常可以作为其信号分析的实时带宽,大多数的频谱分析的实时带宽只有几兆赫兹,通常较宽的实时带宽通常为几
[测试测量]
<font color='red'>频谱仪</font>和示波器有什么区别
示波器探头与探头附件的重要性- 探测信号和获得测量精度
要想获得示波器的最佳性能, prbtek提醒您根据应用使用正确的探头 ; 选择最佳的探头,可确保您轻松访问信号并获得可靠的测量结果。 无源探头 当您需要进行高压测量时,您可选择使用非常坚固、经济的探头。 有源探头 这些单端或差分探头可通过较低的信号负载处理较高的带宽。单端有源探头具有低探头负载,通常适用于接地参考和高速信号测量。借助低负载,单端探头可用于不适合使用无源探头 (将会过载) 的高阻抗、高频率的电路。差分探头通过差分放大器来提取两个输入信号并构成一个差分信号,然后在示波器单通道上进行信号测量,从而让您使用以接地为参考的标准示波器来测量不以接地作为参考的信号。 电流探头 PRBTEK提供了广泛的交流 / 直流电
[测试测量]
示波器探头与探头附件的重要性- 探测信号和获得<font color='red'>测量</font><font color='red'>精度</font>
是德(安捷伦科技:打响示波器第一保卫战
2014年,对测试测量厂商和示波器市场而言,似乎注定将是充满变数和无限可能的一年。安捷伦拆分,新的是德科技将更加专注于通用测试测量领域。面对包括NI、罗德与施瓦茨以及一些本土示波器品牌的冲击,是德科技未来之路有哪些谋划?就此话题,与非网记者采访了安捷伦(是德)科技数字与光测试业务部大中华区市场经理杜吉伟。 杜吉伟表示:仅就示波器而言,2014年没有任何一个厂家甘于寂寞,有半导体工艺的,在工艺领域持续发力,没有半导体工艺的,试图在芯片技术上取得突破,没有芯片技术的,则试图组合现有技术或芯片在功能上实现差异化。2014年,对示波器而言是一个涨潮的年代,争相弄潮的同时,您也许不会想到,退潮的时候,是谁在裸泳?谁在领导行业前行。
[测试测量]
基于数字移相高精度脉宽测量系统
在测量与仪器仪表领域,经常需要对数字信号的脉冲宽度进行测量。这种测量通常采用脉冲计数法,即在待测信号的高电平或低电平用一高频时钟脉冲进行计数,然后根据脉冲的个数计算待测信号宽度,如图1所示。待测信号相对于计数时钟通常是独立的,其上升、下降沿不可能正好落在时钟的边沿上,因此该法的最大测量误差为一个时钟周期。例如采用80MHz的高频时钟,最大误差为12.5ns。 提高脉冲计数法的精度通常有两个思路:提高计数时钟频率和使用时幅转换技术。时钟频率越高,测量误差越小,但是频率越高对芯片的性能要求也越高。例如要求1ns的测量误差时,时钟频率就需要提高到1GHz,此时一般计数器芯片很难正常工作,同时也会带来电路
[测试测量]
基于数字移相高<font color='red'>精度</font>脉宽<font color='red'>测量</font>系统
仪表测量测量精度如何,性能与参数指标分析
测量仪表的质量通常用一个简单的问题进行评估:测量精度如何?选择最适用的测量仪表就需要认识一下影响测量不确定性的一些因素。这样反过来还可更深入了解该类仪表的技术指标所列出的信息以及未列出的信息。 仪表测量的性能根据动态性(量程、响应时间)、准确度(重复性、精密度和灵敏度)以及稳定性(对老化及恶劣环境的容差)来进行评估的。其中,准确度(应该是最大允许误差,经常被叫做精度)通常被视为最重要的质量因素,也是最难以确定的因素。 灵敏度与准确度 测量输出变化与标准值变化之间的关系称为灵敏度。理想情况下这种关系呈现为完美线性,但在实际操作中所有测量均会存在某些瑕疵或不确定性。 被测值与与标准值的一致性通常简单地称为“准确度”,但这是
[测试测量]
仪表<font color='red'>测量</font>的<font color='red'>测量</font><font color='red'>精度</font>如何,性能与参数指标分析
频谱仪原理简介一
频谱分析仪,简称频谱仪,是在频域上分析信号特征的工具,如信号的频率分布、频率、功率谐波、杂波噪声、干扰失真等。 一、 频谱 频谱是一组正弦波,经过适当组合后,形成被考察的时域信号。 上图显示了一个复合信号的波形,假定我们希望看到的是正弦波,但显然图示信号不是纯粹的正弦波,而仅靠观察又很难确认其中的原因。而对应到下图,同时在时域和频域显示了这个复合信号。频域图形描绘了频谱中每个正弦波的幅度随频率的变化情况。 常见的频谱分析测试包括频率和功率、调制、失真和噪声测量。 频谱分析仪分为超外差式频谱分析仪和非超外差式频谱分析仪(傅里叶频谱分析仪)。傅里叶频谱分析仪常用于40MHz以下的基带信号分析。 二、频谱仪分析原理结构
[测试测量]
<font color='red'>频谱仪</font>原理简介一
在操作频谱仪之前我们需要做哪些准备工作呢?
频谱仪,也叫频谱分析仪(英文名称Spectrum Analyzer),是专门用于研究电信号频谱特性的仪器。那么在操作频谱仪之前我们需要做哪些准备工作呢?下面我们以罗德与施瓦茨公司(R&S)的FSL3频谱仪(频率范围9kHz~3GHz)为例,来为大家做简单介绍。 在罗德与施瓦茨R&S FSL3频谱仪配套的操作说明书中,清楚地列出了操作仪器之前的准备工作: a.打开仪器及其附件的包装 b.检查附件 c.运输损坏检查 d.保修 e.推荐校准周期 f.准备仪器进行操作 g.电源选件 h.连接AC电源 i.打开仪器 j.执行自校正和自检 k.检查配件的选件 l.关闭仪器 m.更换保险丝 n.电池充电(R&S FSL—B31选件) 里
[测试测量]
小广播
最新网络通信文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved