示波器探头与探头附件的重要性- 探测信号和获得测量精度

发布者:legend9最新更新时间:2021-10-12 来源: eefocus关键字:示波器  探头  探测信号  测量精度 手机看文章 扫描二维码
随时随地手机看文章

要想获得示波器的最佳性能, prbtek提醒您根据应用使用正确的探头 ;

选择最佳的探头,可确保您轻松访问信号并获得可靠的测量结果。

无源探头

当您需要进行高压测量时,您可选择使用非常坚固、经济的探头。


有源探头

这些单端或差分探头可通过较低的信号负载处理较高的带宽。单端有源探头具有低探头负载,通常适用于接地参考和高速信号测量。借助低负载,单端探头可用于不适合使用无源探头 (将会过载) 的高阻抗、高频率的电路。差分探头通过差分放大器来提取两个输入信号并构成一个差分信号,然后在示波器单通道上进行信号测量,从而让您使用以接地为参考的标准示波器来测量不以接地作为参考的信号。


电流探头

PRBTEK提供了广泛的交流 / 直流电流探头,可覆盖 50 uA 至 500 A 的输入范围。专为小电流信号探测而设计的全新低噪声探头系列可以让工程师查看和分析小电流信号,以降低测量噪声。N2820A/21A 交流/直流电流探头具有业界最高的灵敏度,可覆盖最低 50 uA 至最高 5 A 的电流范围。


探头附件

与细微间距的器件、表面封装集成电路和 DDR 球形栅格阵列等元器件进行连接是非常困难的。探头附件使连接变得简单、轻松。


关键字:示波器  探头  探测信号  测量精度 引用地址:示波器探头与探头附件的重要性- 探测信号和获得测量精度

上一篇:示波器无源探头的阻抗匹配问题
下一篇:PRBTEK分享泰克无源单端探头选型介绍

推荐阅读最新更新时间:2024-10-10 16:58

示波器的认识和使用习惯
本文从自身经历出发回答了一个经典问题:为什么要养成使用示波器的习惯。文章写得很实在,对于用过示波器的人来说,可能会感受到“确实是那么回事”。 作者认为示波器是理论联系实际的好帮手,可以帮您直面bug的本质。有了示波器的测试结果,“有图有真相”,便于分析问题。 当一件正确的事情成为我们习惯的时候,对一个人的影响是正面且长期的,意义也很重大。 养成使用示波器的习惯对一个工程师的影响也是一生的,而当习惯进一步上升为理念时,就算刻意去摆脱都不是那么容易。 当产品出现问题时,很多人下意识还是会拿万用表去东量量,西测测。究其原因,万用表人手一个,使用便捷,所以受到广大工程师的欢迎。在这里我想说的是这个习惯不大好,详细原因且听我慢慢道来。
[测试测量]
示波器的带宽对上升时间测量的影响
在示波器的日常使用中,小伙伴们使用最频繁的功能应该是参数测量。现在的示波器参数测量功能很强大,既可以测量频率、脉宽等时间信息,也可以测量幅度、平均值等电压信息,还可以统计上升沿次数、面积等其他要素。不过对于这些测量结果,准确度是否让人信服?本文就以上升时间的测量误差为例,突出示波器在测量中的注意事项。 上升时间的定义 上升时间是信号上升快慢的数值,那其准确的内涵该是如何定义了?说来话长,因为定义是比较严谨的,一环套一环。按常规理论:信号的上升时间是正向沿的较低阈值交叉点与较高阈值交叉点之间的时差。顾名思义,上升时间肯定是在信号的上升沿时测量的;较低阈值、较高阈值的取值在某些示波器中是可以自定义的,默认为10%、90%幅值处。而幅值
[测试测量]
<font color='red'>示波器</font>的带宽对上升时间<font color='red'>测量</font>的影响
以FPGA为基础的示波器图文显示系统软硬件设计思路与方案
FPGA(Field Programmable Gate Array),即现场可编程门阵列是大规模可编程逻辑器件,可以取代现行所有的全部微机接口芯片,实现微机系统中的存储、地址译码等多种功能。利用 FPGA可以把多个微机系统的功能电路集成在一块芯片上。应用FPGA设计功能电路时,可以让人们的思路从传统的以单片机或DSP芯片为核心的系统集成型转向单一专用芯片型设计。传统的示波器虽然功能齐全,但是体积大、重量重、成本高、等一系列问题使应用受到了限制。有鉴于此,便携式数字存储采集器就应运而生,它采用了LCD显示、高速A/D采集与转换、ASIC芯片等新技术,具有很强的实用性和巨大的市场潜力,也代表了当代电子测量仪器的一种发展趋势,即向功能
[测试测量]
以FPGA为基础的<font color='red'>示波器</font>图文显示系统软硬件设计思路与方案
如何避免检测到来自探头外壳电流的信号
示波器探头都有两根导线,一根用于连接测试电路与示波器的垂直放大器(称为传感线)另一根用于连接示波器机壳地和本地电路的数字逻辑地(称为屏蔽线)。通常,我们只需要考虑示波器对传感线电压的响应。这一节里分析示波器对屏蔽线上的信号是如何响应的。 示波器的机壳地和逻辑地之间的任何电压差都可以在屏蔽线中引起电流。在图3.17中,通过屏蔽线电阻R屏蔽的屏蔽线电流产生了压降V屏蔽。探头电缆的中心导体,也就是传感线,没有传导屏蔽电流,因此它上面并没有压降。 当传感线和屏蔽线都连接到工作电路的地时,两条线上的不同压降会在示波器的垂直放大器上反映两者的电压差。我们无从知道这个电压差是由探头电缆远端的实际信号产生的,还是由屏蔽电流产生的。虽然我
[测试测量]
如何避免检测到来自<font color='red'>探头</font>外壳电流的<font color='red'>信号</font>
示波器灰度显示和色温显示的意义及功能
本文主要论述波形三维映射原理,结合ZDS 示波器 讲述灰度显示和色温显示的意义以及相应的功能,以帮助工程师加深对示波器波形显示的理解,在示波器后续的使用上更加的得心应手。 波形数据的三维信息包括:时间,幅度和幅度命中次数。传统DSO对波形的处理过程中,通过波形的原始数据进行抽样提取一幅波形所需要的数据进行绘制,这样抽样显示就只有时间和幅度信息。而在现代DSO中,可将一次触发后采集到的所有数据展现在屏幕上,并通过三维映射灰度图来体现时间,幅度以及波形数据在每一个幅度上命中次数。例如一次触发采样有14000个采样点,DSO屏幕水平方向上有700个像素点,那么在传统的DSO中只需要在14000个采样点中,每隔200个样点抽取1个,共
[测试测量]
<font color='red'>示波器</font>灰度显示和色温显示的意义及功能
低压测量中对探头的考虑
几乎所有示波器都标配了10X衰减无源探头,因为这种探头是在多种应用中进行测量的最佳选择。为覆盖范围最广泛的应用,通用探头的带宽一般在DC-500MHz,一般能够测量几百伏的电压。进行低压测量的用户通常会落入使用示波器标配10X探头的陷阱——最后得到的结果并不准确,因为10X无源探头在毫伏级的低压范围内并不能准确地进行测量。 在进行低压测量时,必需考虑示波器的灵敏度、探头衰减、系统噪声、探头接地、探头输入阻抗、AC耦合、探头偏置和探头带宽。 最大化示波器的垂直灵敏度 垂直灵敏度表明了示波器垂直放大器能把信号放大到多大。在大多数泰克示波器上,在没有连接探头的情况下,最灵敏的垂直设置是1mV/格。如图1所示,在连接2X探头时(通道
[测试测量]
低压<font color='red'>测量</font>中对<font color='red'>探头</font>的考虑
示波器中的精密探头校准技术
传统的示波器,对于探头或连接电缆的校准,一般只提供DC校准方法,主要校准: 1)DC衰减 2)偏置 校准的过程是: 示波器内部有一个DAC信号发生器,产生不同电压的直流信号,用探头或连接电缆测试每个电压值,测出偏差,得到校准表。 也有些示波器提供Skew校准,校准的过程是: 示波器内部产生快速边沿,用探头或连接电缆测试这个快速边沿与内部快速边沿的偏差(校准时,内部的快速边沿分两路,一路连接到触发电路,一路通过校准口输出,再连接到探头和连接电缆),得到校准表。 这些校准方法都没有校准探头或连接电缆的频响。而随着示波器、探头或连接电缆的带宽的提升,探头或连接电缆的频响已经对测试结果产生了很大的影响
[测试测量]
<font color='red'>示波器</font>中的精密<font color='red'>探头</font>校准技术
用混合信号示波器探测模拟和数字信号
既然眼球决定商机,那么首先我们看看下面几张产品照片,这些很炫的UI是怎样开发的呢,这些产品是什么操作系统呢?Android ? 图1 多彩UI设计 不知道你心里的答案是什么,是Android也好,其他的系统也罢,不知你是否想到了WinCE系统?Android 使用XML 语言来划分这应用程序开发者和UI设计者的界限。这种思想在QT 和WinCE 上也得到了快速的借鉴和推广。 Windows Embedded高级产品经理David Wurster曾表示,微软丰富的工具提供差异化的用户体验。UI方面,面向Windows Embedded的SilverLight技术能够发挥非常大的作用,基于SilverLight的UI框架恰恰
[模拟电子]
用混合<font color='red'>信号</font><font color='red'>示波器</font><font color='red'>探测</font>模拟和数字<font color='red'>信号</font>
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved