基于ADS1274的可控式高精度数据采集系统

发布者:BlissfulAura最新更新时间:2009-01-22 来源: 国外电子元器件关键字:DSP  ADS1274  数据采集 手机看文章 扫描二维码
随时随地手机看文章

1、引言

  便携式振动测试分析仪凭借其轻巧方便,适用范围广,灵活性高,测量对象多的特点。在旋转振动信号采集领域取得了广泛应用。传统振动侧试仪采用8位或16位单片机作为其控制器,用加速度传感器或其他传感器采集振动物理信号,并通过模拟调理电路和数字调理电路将该信号进行数字式量化,然后利用处理器对数据进行时域和频域分析。但它的总体性能较差,主要表现:MCU功能弱;工作模式简单;灵活性比较差;采样精度低;功耗较高。对此采用TMS320VC5502高性能数字信号处理器(DSP)和ADSl274高精度∑一△结构A/D转换器,构建了一个工作模式可控的高精度数据采集系统。该系统具有高精度多通道同步采样和工作模式动态选择等功能,用户可根据需要合理选择系统的工作模式,使测试需求与系统功耗达到最佳配比。

2、器件选型

2.1 TMS320VC5502简介

  TMS320vc5502是一款高性能的DSP。可以提供具有300 MHz双MAC的强大性能,可实现高速、大容量数字信号处理,现已广泛用于嵌入式电信设备、消费类音频、医疗、生物辨识和工业传感器等领域。TMS320VC5502既提供了16/8位加强型主机接口(HPI),可实现双处理器间的数据通讯功能;提供32位外部存储器接口(EMIF),以实现与廉价的SDRAM、SBRAM、异步RAM和Flash存储器的无缝连接,便于外部存储器扩展;具有3个McBSP和6通道DMA,可支持128通道100 Mh/s的内外部数据传输。

2.2 ADS1274简介

  ADS1274是一款高精度A/D转换器,具有24位精度.是一种宽动态范围的新型A/D转换器,可实现4通道同步数据采集。ADS1274具有62 kHz的带宽,最高采样频率可达128KS/s。主要特性包括:①采用差动输入方式,所以输入端可直接与传感器或微小的电压信号相连;②采用∑一△结构,具有宽泛的动态范围和24位无差错编码;③采用低噪声增益可编程放大器(PGA),可扩展动态范围,提高分辨率;④内部采用三阶数字滤波器,可滤除电源波纹和其他干扰;⑤采用多种内部自校正技术,用于校正失调电压,校准满刻度误差;⑥提供SPI或FRAME-SYNC接口;⑦提供高速、高分辨率、低功耗和低速4种工作模式可以供用户选择;⑧采用独立供电,+5 V模拟电源,1.8 V数字电源,1.8~3.3 V的I/0电源。ADSl274采用HTOFP一64封装。

3、系统硬件设计


3.1 系统总体设计

  该系统需要实现对旋转机械信号进行多通道实时数据采集、预处理以及与上位机之间的数据传输等功能。该系统采用TMS320VC5502作为主控制器件,片上资源丰富,可提供全双工缓冲串口以及多路I/0接口。系统通过缓冲串口与A/D转换器通讯.并通过两路I/O接口实现对A/D转换器工作模式的控制.通过DSP的增强型HPI接口实现采集数据与上位机的数据传输.其传输速度高达100 Mb/s。TMS320VC一5502能高效地实现系统初始化、外围器件和HPI通讯接口的配置,并根据上位机ARM控制器传送来的主机命令,实时采集和处理数据.最后将处理后的数据包传输给上位机显示、存储和高级处理。

3.2 TMS320VC5502与ADSl274的接口电路

  ADS1274提供SPI或FRAME—SYNC接口,可方便地实现与处理器的连接。该系统通过TMS320VC5502的多通道缓冲串口(McBSP)与ADS1274数据传输。TMS320VC5502与ADS1274的电路连接如图1所示。

3.3 信号调理模块

  ADS1274通过设置可以采用单端输入和差分输入两种模式。差分输入可有效抑制零漂和消除信号共模干扰,因此系统设计通过运放OPA1632后将信号输入配置为差分输入方式,具体信号调理电路如图2所示。

 

3.4 电源模块

  TMS320VC5502需提供+3.3 V(I/O电源)和1.26 V(DSP核电源)两种不同的供电电源,而ADSl274需对10VDD(+3.3V)、AVDD(+5 V)、DVDD(+1.8 V)分别供电,凶此系统设计需要电源模块电路,以保证系统正常工作。这里,选用TI公司的专用电源转换器设计电源电路模块,如图3所示。

3.5 ADS1274工作模式

  由于∑一△结构的A/D转换器由于采用过抽样理论,允许牺牲速度换取高精度或牺牲精度获取高采样频率,因此通过对过抽样率的调整来控制采样频率和采样精度,以满足不同信号的采样需求。ADS1274可提供高速、高分辨率、低功耗和低速4种操作模式供用户选择,也可通过配置MODE[1:0]引脚信号实现模式控制。将ADSl274的模式选择引脚MODE[1:0]连接到DSP巾的通用I/0端GPI03和GPI05引脚来选择4种模式。在数据采集系统初始化阶段,通过设置使DSP从GPI-03、GPIO5输出相应的模式选择信号,从而实现模式选择的可控性。同时,通过DSP的定时器给ADS1274输出时钟,从而更精确地控制4个通道的同步采样频率。

3.6 数据通讯接口

  AD1274的数据输出接口基于SPI和Frame一Sync两种协议,通过控制FORMAT[2:0]引脚来配置数据输出模式。该系统设计通过DSP的缓冲串口与A/D转换器数据传输。通过将FORMAT[2:0]3个引脚置低,而将数据接口配置为SPI协议的TDM模式。

4、系统软件设计

  系统软件设计主要包括TMS320VC5502串口和ADS1274初始化、DSP主程序、驱动程序和应用程序。DSP通过对McBSP复位并配置McBSP寄存器,完成串口初始化。ADS1274的初始化是通过配置控制寄存器而使数据、寄存器地址和配置信息在同一串口传输,ADS1274采用SPI和FRAME-SYNC通信模式,数据由DOUT读出,然后通过McBSP串口将数据传输给DSP进行数据处理。

  系统软件函数主要包括mcbsp0_init,start_timerO,inter-rupt_init,CSL_init(),PLL_setFreq等。通过配置GPT和GPI0及系统中断来控制两个I/0端口的输出,以实现对ADS1274工作模式的控制。

5、结语

  在开发以ARM_DSP双核架构为基础的便携式数据采集仪中,为解决系统数据采集精度、速度和功耗问题,构建了一种模式可控的高精度数据采集系统。该系统采用高性能DSP作为主控制器,动态控制A/D转换器的工作模式.增强了嵌入式系统的应用灵活性和通用性,使用户可以根据任务灵活选择A/D转换器的工作模式,以使系统工作在最佳的功耗和性能配比下。该系统设计打破了以往A/D转换器固定工作模式的设计理念,为构建嵌入式数据采集系统提供了一个更灵活、通用的解决方案。

关键字:DSP  ADS1274  数据采集 引用地址:基于ADS1274的可控式高精度数据采集系统

上一篇:uC/OS-II实时操作系统移植的一般方法和技巧
下一篇:C645x的串行RapidlO息线通信系统设计

推荐阅读最新更新时间:2024-05-02 20:45

具有多个电压轨的FPGA和DSP电源设计实例
大多数电子产品由于包含一个或多个FPGA或DSP数字处理芯片而需要提供多个电源轨。在为这些数字IC供电时,有多种方案可以选择,也有许多潜在的陷阱需要避免。在“具有多个电压轨的FPGA和DSP应用的电源设计方法”一文中,作者提出了多电压轨FPGA和DSP应用的电源解决方案,讨论了功率预算和排序选择等在系统水平所关注的问题。本文将着重讨论如何在各种类型的点到负载点(POL)直流/直流转换器之间做出选择,并讨论如何设计这些转换器才能满足直流精度以及启动和暂态要求。   降压直流/直流转换器拓扑的回顾   降压POL直流/直流转换器可以分成两类:线性稳压器和基于电感的开关稳压器。图1显示了线性稳压器的功能图。  
[电源管理]
具有多个电压轨的FPGA和<font color='red'>DSP</font>电源设计实例
基于MSP430F449单片机和M-BUS总线实现数据采集系统的设计
引 言 随着社会的迅速发展,智能小区逐渐进人人们的生活,而自动抄表系统是智能小区的重要功能之一。在水、电、气管理方面,采用自动抄表技术,不仅能节约人力资源,更重要的是可提高抄表的准确性,减少因估计或誊写而造成帐单出错的现象,使水、电、气管理部门能及时准确获得数据信息。另外用户不再需要与抄表者预约上门抄表时间,还能迅速查询帐单,所以这种技术越来越受到用户欢迎。 针对目前市场上自动抄表系统价格不菲的现状,设计一种由零功耗磁敏传感器产生脉冲信号,利用MSP430系列超低功耗单片机的捕获功能捕获信号的数据采集系统。该采集系统价格相对低廉,性能可靠,适用于水、煤气、电表的远传采集;数据传输总线选用M-BUS,传输速度快、距离远、可靠性高
[单片机]
基于MSP430F449单片机和M-BUS总线实现<font color='red'>数据采集</font>系统的设计
基于单片机和DSP的被动声目标探测平台设计方案
1 引言 被动声目标的信息一般夹杂在复杂多变的环境噪声中,信噪比低。采用传统的目标探测,较难达到要求, 必须使用先进的检测、定向定位算法,然而这些算法的运算量都较大,实时实现有一定难度。数字信号处理器DSP的出现,使得先进算法的工程实时实现成为可能。但系统的体积、功耗和可靠性又成为主要问题。本系统采用TI公司的低功耗5000系列DSP和微功耗430系列单片机,采用主从式通用化体系结构设计,在满足系统功能要求的前提下,对系统的体积、功耗和可靠性做了很大的改进,特别适于在电池供电、功耗要求严格的设备中使用。另外,对系统提供了丰富的接口,可使其满足被动目标探测系统的不同要求。 2 系统的整体设计 目标探测通用平台的主要功能是目标信息
[单片机]
基于单片机和<font color='red'>DSP</font>的被动声目标探测平台设计方案
DSP编程技巧之2:揭开编译器神秘面纱之处理器选项
  也许你已经熟练使用了 CCS 好多年,可是当某一天出现一个与cl2000有关的错误的时候,突然间也摸不着头脑了;例如使用老版本的还不支持C2000 FPU 的 CCS 来编译28335的程序,cl2000就会提示你各种不支持然后报错不运行了。Cl2000.exe是神马?   Cl2000.exe就是和我们的程序编译密切相关的 编译器 了,使用的方法是:    cl2000 目标文件]]   使用方法看起来很复杂,还好 CCS 已经帮我们调用它了(或者说CCS就是一个框架,它完成的编译、调试、链接等功能几乎都需要调用一些别的exe来执行,所以你可能体会过升级了一些库文件、编辑器版本等,界面文件等却不需要进行
[嵌入式]
基于ARM和DSP的竹节纱控制系统伺服控制器设计与应用
  ARM微处理器具有体积小、低功耗、低成本、高性能的特点,基于ARM核的微控制器芯片不但占据了高端微控制器市场的大部分市场份额,同时也逐渐向低端微控制器应用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微控制器基。提出了挑战。ARM微处理器及技术应用到了许多不同的领域,如工业控制领域、无线电通讯领域、网譬络应用、消费类电子产品以及数字成象与安全产品当中,凭借其优点将来还会得到更加广泛的应用。本文通过分析 竹节纱 装置的工艺要求,设计了具有竹独立控制结构的永磁同步电机伺服控制系统,由ARM和触摸屏构成控制器,并在ARM核中移植嵌入式操作系统Windows CE,使其具有图形化的人机丕界面操作功能,支持触摸操作,可
[嵌入式]
基于ARM和<font color='red'>DSP</font>的竹节纱控制系统伺服控制器设计与应用
DSP编程的几个关键问题
  DSP芯片凭其优异的性能在高速计算领域有着巨大的应用前景。但其应用所涉及的知识非常庞杂。本文以TI公司320C54X系列为蓝本进行提纯,所有认识都是笔者在实际工作中亲手实践所得。当程序调不通不知该从何处下手时,此文也许会有所帮助。这些关键点有些是TMS320C5409所触有而有些是与DSP所共有的。   1 McBSP(Multichannel Buffered Serial Port)串口利用DMA中的多帧(Multi-Frame)方式通信的中断处理   在实际通信应用中,一个突发之后,程序必须为下一个突发作准备。因此一般采用串口的DMA多帧方式但在串口以DMA方式传输数据时却有一些问题要讨论。首先DMA的传输同步事件应
[嵌入式]
基于DSP的数字图像处理系统中的抗干扰设计
0. 引言 随着人类文明的进步和电子科技的快速发展,视频通信作为人类视野的延伸,被广泛应用于各行各业。应运而生的数字图像处理技术也就得到了飞速地发展。目前,由于运算速度快、片上资源丰富和能够实现复杂的线性和非线性算法等原因,DSP已成为通信、计算机和消费电子产品等领域的基础器件,其中在数字图像处理技术中显得尤为突出。然而,由于包括DSP本身在内的所有电子器件都是干扰源,而且系统所处的工作环境中还有很多外界干扰源,再加上数字图像处理技术对信号噪声非常敏感,所以在系统设计中必须考虑系统的抗干扰问题。否则,至少会影响系统的处理结果,甚至造成更为严重的后果。本文就是介绍基于DSP的数字图像处理系统中的抗干扰设计。 1. 系统的干扰源和
[嵌入式]
ADI公司SHARC(R)处理器助力KORG公司WAVEDRUM Mini打击乐合成器
     Analog Devices, Inc. (ADI)最近宣布,电子乐器先驱 KORG Inc.选用 ADI 公司的 SHARC®处理器(http://www.analog.com/zh/pr1129/sharc )作为其畅销全球的新型便携式打击乐合成器 -- WAVEDRUM Mini 的数字信号处理(DSP)引擎。WAVEDRUM Mini 是 KORG 于2009年推出的打击乐合成器 WAVEDRUM WD-X 的新一代、便携式、电池供电版产品,以 ADI 公司的 ADSP-21375 ( http://www.analog.com/zh/pr1129/adsp-21375 ) SHARC 32位浮点 DSP 处理器为
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved