ADSP-TS201的系统设计及外部总线接口技术

发布者:彭勇最新更新时间:2009-12-24 来源: 现代电子技术关键字:ADSP-TS201  数字信号处理  接口技术  SDRAM  FPGA 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  随着雷达技术发展,大带宽高分辨力、多种信号处理方式的采用,使得实时信号处理对数据的处理速度大大提高。同时在雷达信号处理中运算量大,数据吞吐量急剧上升,对数据处理的要求不断提高。随着大规模集成电路技术的发展,作为数字信号处理的核心数字信号处理器(DSP)得到了快速的发展和应用。ADSP-TS201DSP是美国模拟器件(ADD公司继TSl01之后推出的一款高性能处理器。此系列DSP性价比很高,兼有FPGA和ASIC信号处理性能和指令集处理器的高度可编程性,适用于大存储量、高性能、高速度的信号处理和图像处理。如雷达信号处理、无线基站、图像音频处理等。

  2 ADSP-TS201简介

  ADSP-TS201采用超级哈佛结构,静态超标量操作适合多处理器模式运算,可直接构成分布式并行系统和共享存储式系统。其性能如下:

  (1)最高工作主频可达600 MHz,指令周期为1.67 ns。支持单指令多数据(SIMD)操作。

  (2)支持IEEE32位、40位浮点数据格式和8位、16位、32位和64位定点数据格式。

  (3)4条128位的数据总线与6个4 Mb的内部RAM相连。

  (4)32位的地址总线提供4 G的统一寻址空间。

  (5)对与多片处理器的无缝互连提供片上仲裁。

  ADSP-TS201处理器由处理器核和IO接口两部分组成,结构框图如图l所示。其中处理器核由两个计算块、两个整型算术逻辑单元、程序控制器组成。IO接口由内部存储器、外部设备接口、14通道的DMA控制器、全双工的LVDS链路口、IEEEll49.1JTAG接口组成。内部存储器为24 Mb DRAM,外部设备接口包括SDRAM控制器、EPROM接口、主机接口、多处理器接口。

结构框图

  3 系统设计

  应用ADSP-TS201进行系统设计时,有一些特别需要注意的地方,如:电源设计、时钟设计、JTAG接口、未使用的管脚如何处理等。下面就这几个方面分别进行讨论。

  3.1 电源设计

  ADSP-TS201处理器共有4组电源,分别是核电源(VDD)、模拟PLL 电源(Vm-1)、内部DRAM电源(VDD-DRAM)、IO电源(VDD-K),并且在不同的工作频率下供电要求不同。以600 MHz为例,电源工作参数如表1所示。因此设计电源的时候要选择符合电压电流要求的电源。

电源工作参数

  ADSP-TS201在上电的时候有上电顺序的要求,这点在电源设计的时候必须考虑到。其上电顺序如图2所不,要求tVDD_ DRAM大于O ms,保证DRAM的上电在最后,而且上电时间也要有所保证。所以在选取电源芯片时应该选择带有关断功能的芯片,如MAX8869等。在电源芯片的SHUTDOWN管脚接一个电容到地,利用电容的充放电作用,在上电开始使能SHUTDOWN管脚,使电源芯片处于关断状态。随着电容充电至电源电压,SHUTDOWN为高电平,此时电源芯片开始工作,输出1.6 V的电压,为DRAM供电。

上电顺序

  另外ADSP-TS201电源管脚需要旁路电容去耦。在PCB设计时旁路电容的顺序分别是:VDD A到VSS的旁路电容;VDD到VSS的旁路电容;VDD-DRAM到VSS的旁路电容; VDD-IO到VSS的旁路电容。

  3.2 时钟设计

  ADSP-TS201有2个时钟参考电压管脚,SCLK_VREFl和SCLK_ VREF2,这两个管脚应该连在一起,为系统时钟供电电压的一半。SCLKl和SCLK2是时钟输入端,最大系统时钟是核时钟的1/4。同时SCLK也为外部接口总线提供时钟。ADSP一TS201内部有一个PLL,通过设置SCLKRATE2~0引脚将SCLK倍频到所需的核时钟。在设计过程中,为了保证时钟的同步,可以采用时钟驱动芯片,可以同时输出多路时钟,为TS201 SDRAM提供系统时钟。

  3.3 JTAG接口

  ADSP-TS201 JTAG仿真器是一个14脚的母头,第3脚是没有任何连接的。在调试过程中第3脚必须拔出来。在JTAG接口设计时要注意以下方面:正确的上下拉电阻,数据(TDI,TMS,TDO,TRST,EMU)驱动、时钟驱动如74系列的驱动芯片。

  3.4 未使用管脚的处理

  ADSP-TS201包含有3个NC管脚,在设计中不要有任何连接。对于没有用到的管脚,应根据是单片系统还是多片互连系统进行处理,可以悬空的管脚悬空,不能悬空的管脚一定要接上拉电阻或者下拉电阻。特别是没有用到的链路口的输入管脚的处理,主要参考ADI网站中所给出的数据手册。

  另外TS201支持多片DSP互连,最多可达8片。通过链路口完成片与片之间的通信,电路连接简单。

  4 外部总线接口技术

  ADSP-TS201外部总线支持各种不同的通用/专用协议,并且可以通过编程进行配置。外部总线接口支持流水线协议,SDRAM协议和慢速设备协议。TS20l可以采用流水线协议访问存储系统,数据传送速度非常快。另外TS20l有片上的SDRAM控制器,支持SDRAM协议。以下就是这两种协议的应用。


  4.1 SDRAM接口

  ADSP-TS201处理器有一个专用的SDRAM接口.可以实现与标准SDRAM 6 Mb,64 Mb,128 Mb.256 Mb.512 Mb的无缝连接。支持1 024-,512-,256字的页面长度,通过对SDRCON寄存器的编程可实现页面长度的选择。同时SDRAM占用TS201的外部存储空间地址,通过设置/MSSD3~0来确定SDRAM的地址空间范围。

  本设计选用的SDRAM是HY57V561620B,页面长度为512字,将两片SDRAM拼接成32位的总线宽度,实现与TS201的无缝接口。根据不同的总线宽度,TS201的地址总线与SDRAM的连接有所不同。

  (1)对于32位数据总线其连接方式如下:

  SDRAM地址Bit9~0与TS201 ADDR9~0相连;

  SD 
RAM地址Bitl0与TS201的SDA10管脚相连;

  SDRAM地址Bitl5~11与TS201 ADDRl5~11相连。

  (2)对于64位数据总线,连接方式如下:

  SDRAM地址Bit9~0与TS201 ADDRl0~1相连,TS201 ADDR0悬空;

  SDRAM地址Bitl0与TS201的SDAl0管脚相连;

  SDRAM地址Bitl4~11与TS201 ADDRl5~12相连。

  另外对于标准的SDRAM(3.3 V),TS201的地址线ADDRl5∽11都可以作为BANK的选择线。对于低功率的SDRAM(2.5 V),只有ADDRl5~14可以作为BANK的选择线。因此在进行接VI设计时一定要注意所选择SDRAM的电参数。

  4.2 ADSP-T$201与FPGA接口

  本文设计的系统需要将FPGA连接在TS201的外部总线上,采用DMA中断,通过总线的方式从FPGA的外挂RAM(乒乓存储)中读取数字下变频后的I,Q两路数据,其连接方式如图3所示。

ADSP-T

  其中MS0,MS1是片选信号,RD和WRL分别是读和写信号。在一个PRF周期内FPGA进行数字下变频,将I,Q数据存储到SRAM中,然后向 TS201发出DMA请求,TS201将SRAM的数据采用流水线协议通过总线读入片内RAM中,进行后续的处理。再将处理完的数据以总线方式写入到FPGA内部RAM中,以便进行在线仿真或者进行后续的输出。

  5 结 语

  本文主要结合ADI公司的高性能ADSP-TS201的结构特点,讨论了在系统设计的过程中应该重点注意的几个问题和ADSP-TS201的外部接口技术,并给出了其与SDRAM,FPGA的连接实例,对基于TigerSHARC系列DSP的应用设计具有实用的参考价值。

关键字:ADSP-TS201  数字信号处理  接口技术  SDRAM  FPGA 引用地址:ADSP-TS201的系统设计及外部总线接口技术

上一篇:基于FPGA的生物芯片扫描仪的位置检测
下一篇:TMS320F206外围电路典型设计

推荐阅读最新更新时间:2024-05-02 20:57

基于DSP和FPGA的汽车防撞高速数据采集系统
随着人们生活水平的提高,公路上的私家车辆也增多了,但随之带来的问题就是交通事故发生率居高不下,严重危害着人们的生命安全。文中就如何预防交通事故发生,研究设计一种响应迅速、高可靠性并且经济实用的汽车防擅报警设备。该设备在设计过程中的关键任务是利用置于汽车车头左右两端的双路通道高速采集激光雷达回波信号并对其进行实时存储和处理,进而快速测量自身交通工具与障碍物之间的距离及相对速度。 1 系统概述 对用于高速公路中的雷达系统而言,考虑到开车的速度比较快,对于一些突发事件无法立刻做出响应,因此就要求设计的防撞雷达探测距离尽量长些,可让驾驶员提前做好安全准备工作,因此这种高速公路防撞系统一般选用激光探测法。采用激光测距的汽车防撞系统结
[测试测量]
基于DSP和<font color='red'>FPGA</font>的汽车防撞高速数据采集系统
FPGA设计中的时序管理
    当FPGA设计面临高级接口的设计问题时,该采取什么办法来解决呢?美国EMA公司的TimingDesigner软件可以简化这些设计问题,并提供对几乎所有接口的预先精确控制。下问文将向你娓娓道来。    一、摘要   从简单SRAM接口到高速同步接口,TimingDesigner软件允许设计者在设计流程的初期就判断出潜在的时序问题,尽最大可能在第一时间解决时序问题。在设计过程的早期检测到时序问题,不仅节省时间,而且可以更容易的实施设计方案。美国EMA公司的设计自动化工具--TimingDesigner,允许创建交互式时序图来获取接口规范,分析组件接口时序的特点,在项目工程师团队中沟通设计要求。        
[嵌入式]
SoC FPGA提升蜂巢网络设备整合度
蜂巢式网络服务供应商对降低营运成本的需求愈来愈迫切,因此现场可编程门阵列(FPGA)业者推出整合嵌入式处理器的SoC FPGA方案,并导入效能更高的数字预失真(DPD)演算法,协助网络设备制造商以更低功耗及成本,打造更高生产力的产品。   蜂巢式网络业者设法透过全新传输界面、传输频率、更高频宽以及增加天线的数量和更多无线基地台提升网络密度,因此须要大幅降低设备的成本。另外,这些业者为降低营运成本,也需要更高运作效率和网络整合度的设备。无线基础设备制造商为提供可以符合不同要求的设备,皆在寻求更高整合度、更佳效能和灵活度高的解决方案,并且同时降低功耗和成本。   整合度是降低整体设备成本的关键,然而这必须依赖可提升功率放大器效率的
[模拟电子]
SoC <font color='red'>FPGA</font>提升蜂巢网络设备整合度
ERP与PDM系统接口技术的初步探索
1 ERP系统与PDM系统简述 PDM(产品数据管理)是一门管理所有与产品相关的信息(包括电子文档、数字化文件、数据库记录)和所有与产品有关的过程(工作流程、更改流程、项目管理)的技术,他提供了产品全生命周期的信息管理,并可在企业范围内为产品设计与制造建立一个并行化的协作环境。 ERP(企业资源计划)将企业内部各个部门,包括财务、会计、生产、物料管理、品质管理、销售与分销、人力资源管理、供应链管理等,利用信息技术整合,连接在一起。不同管理人员在一定的权限范围内,通过自己专门的帐号、密码,可以从网上轻易获得与自身管理职责相关的其它部门的数据。 2 接口问题存在的现实问题 ERP系统中的制造BOM,来源于PDM系统,PDM系统管
[嵌入式]
基于FPGA 的高阶全数字锁相环的设计与实现
1 引言   锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,已经成为各种电子设备中必不可少的基本部件。随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。因此,对全数字锁相环的研究和应用得到了越来越多的关注。   传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。对于高阶全数字锁相环,其数字滤波器常常采用基于DSP 的运算电路。这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip)的设计带来一定困难。另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列
[应用]
Microchip推出集成微型FPGA的PIC16 微控制器,售价不到 50 美分
编译自EEJOURNAL Microchip 现在提供一款基于闪存的微控制器,集成可编程逻辑块,其售价不到50美分。 Microchip PIC16F13145 系列的九个新产品,与其他型号16F系列采用相同的 8 位 RISC 微处理器架构,但它们还集成了一个新的可编程逻辑块,称为可配置逻辑块 (CLB)。 PIC16F13145 微控制器系列中的器件采用 8、14 和 20 引脚封装,具有 3.5 至 14 KB 闪存和 256 至 1024 字节 RAM。 Microchip PIC1613145 微控制器系列的九个成员具有相同的内部架构,但具有不同数量的 RAM 和闪存,并提供不同的封装,具体取决于您应用的 I/O
[单片机]
Microchip推出集成微型<font color='red'>FPGA</font>的PIC16 微控制器,售价不到 50 美分
基于CAN核的四冗余通信板设计与仿真
随着电子技术、计算机应用技术和EDA技术的不断发展,利用FPGA进行数字系统的开发已被广泛应用于通信、航天、医疗电子、工业控制等领域,FPGA成为当今硬件设计的首选方式之一。PC/104是一种专门为嵌入式控制而定义的工业控制总线,以其独特的堆栈式结构、低功率等优点,得到了广泛的应用。作为主流的现场总线,工业控制局域网CAN(Controller Area Network)总线抗干扰能力强,易于组网,具有非常广阔的应用前景。独特的PC/104总线与CAN总线的结合,进一步拓宽了CAN总线的应用领域。 1基于FPGA的CAN核设计 本设计采用了Altera公司的Cyclone III系列FPGA EP3C25,开发平台采用
[工业控制]
FPGA技术实现模拟雷达信号
前言 FPGA(现场可编程门阵列)是由掩膜可编程门阵列和PLD(可编程逻辑器件)演变而来的,并将二者的特性结合在一起,使FPGA既有掩膜可编程门阵列的高逻辑密度和通用性,又有PLD的可编程特性。FPAG技术的发展使得单个芯片上集成的逻辑门数越来越多,能实现的功能越来越复杂。它以编程方便、集成度高、速度快等特点受到电子设计人员的青睐。人们可以通过硬件编程的方法设计和开发ASIC(专用集成电路)芯片,极大地提高芯片的研制效率、降低开发费用。 通过应用FPGA技术,较好地为“某型雷达告警设备”的配套检测仪器实现了模拟雷达信号发生器ASIC芯片的设计,该芯片能够提供“某型雷达告警设备”测试过程中所需的多种典型的重频脉冲及制导信号等
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved