基于TMS320C6711的线阵CCD采集与处理系统

发布者:星辰耀眼最新更新时间:2010-07-28 来源: 单片机及嵌入式系统应用关键字:TMS320C6711  CCD  89C52  数据采集  数据处理 手机看文章 扫描二维码
随时随地手机看文章

引言

    TMS320C6711是TI公司推出的DSP芯片。其数据处理功能非常强大,时钟速度可大100M(或者150M),但是其I/O功能要求有限。因此,采用MCU(89C52)作为人机接口,构成双CPU(MCU和DSP)系统。


1 系统构成

    本文所介绍的CCD采集系统是在32位浮点DSP(TMS320C6711)上实现的。如图1所示:单片机89C52负责接受键盘输入,并在液晶显示器上显示处理的结果信息;CCD在光点转换后的数据通过A/D转换器后在异步FIFO中缓存; DSP是系统的信息处理中心,它读取FIFO中的数据后经过处理,将结果传给89C52,由液晶显示器显示信息。


    DSP(TMS320C6711)是整个硬件系统的信号处理中心。它接受CCD传来的采集信号,加以处理并将结果传给单片机。DSP还完成对Flash和SDRAM的控制。

    MCU(89C52)主要充当人机界面的角色,接受外部键盘的输入,将DSP传输未来的结果用数据和图文的形式在液晶显示器上显示出来。

*8KB的可编程Flash Memory;

*可以写/擦1000次以上;

*内置256×8位RAM;

*32个可编程I/O口。

    由于DSP计算能力很强,但I/O控制能力有限,因此89C52的以上性能可以保障系统控制能力,提供人机接口之便。

    CCD(TCD132D)是一种新型的固体成像器件。特别适合各种精密图像传感和无接触工件尺寸的在线测量。TCD132D是具有1024个像素的二相线性CCD。

    IDT7204 是4K×9位的异步FIFO,读写操作会自动访问存储器中连续的存储单元。从FIFO中读出的数据和写入的顺序相同,地址的顺序在内部已经预先定义好。芯片对读写指针提供复位功能,使内部读写指针同时设置到初始位置。另外,它还可以对已经读出的数据通过将读指针重新设置到初始位置而实现数据的重新读取。该器件用9位数据宽度,第9位可以根据用户需要作控制位或者校验位。IDT7204的存取速率可达12ns。

    A/D 转换器(AD7821)是Analog公司出品的高速8位A/D转换器件;Flash采用AMD公司4Mbit的Flash Memory AM29LV400B;SDRAM采用了4片Micron公司生产的高速SDRAM芯片MT48LC2M8A;液晶显示采用T6963C控制器点阵图形液晶显示模块。

2 系统内关键电路的设计和主要芯片的互连互控

2.1 CCD以及A/D模块

    采用TCD132D线性CCD,光电转换后用三极管放大,如图2所示。三极管放大后用LF357进行滤波处理,然后再送A/D模块滤波、转换。A/D转换使用AD7821,采用READ方式读取数据。

2.2 DSP与SDRAM、FIF0的互连和信号完整性设计

    由于TMS320C6711的时钟频率在100MHz以上,时钟沿时间为10ns或者以下,系统构成中除有DSP芯片本身外,还有SDRAM、Flash、FIFO等。故必须对系统进行分割,主要目的是保护高速部分,即SDRAM部分。


    设计中高速部分(SDRAM部分)要求信号线尽量短,尽量靠近DSP。本系统中需要使用大量存储器(4片SDRAM)。DSP与SDRAM的时钟接口速度很高,为保障信号的完整性,如图3所示,采用图4所示的时钟缓冲器产生4个相同、延迟极小并且一致的时钟,分别接到4片SDRAM上。这样不但增加了时钟的驱动能力,同时还很好地保证了信号的完整性。

    为了保护高速信号部分,同时为了防止DSP外设驱动能力的不足,用74LVT162245双向缓冲器实现Flash和异步FIFO数据线的职责离。

    FIFO 芯片IDT7204与DSP连接中图5所示。FIFO是异步器件,所以放到CE1 空间上。FIFO的读信号由XARE#、XCE1#、XA20、XA21控制。当AD7821信号转换害完成后,由DB_INT向WE#写信号线开始写入FIFO;而当FIFO半满后,由HF#向DSP的X_INT4请求写入DSP。

2.3 DSP与MCU的互连

    由于DSP的McBSP接口和MCU(89C52)的UART接口并不一致,所以不能直接把McBSP当作标准的UART来应用。McBSP和UART连接有两种方式:一种是Serial Port方式,硬件连接如图6所示;另一种是将McBSP设置成GPIO方式,其硬件连接如图7所示。

3 系统在生物医学工程中的应用举例

    利用静止悬浮式(非流式)激光散射法血细胞分类计数测定法对血细胞分类计数,不需要固定和染色样品,不需要导电介质,更不需要昂贵的流式装置,可以方便、快捷地对血细胞分类计数。这不但大大降低了仪器造价,满足于血液常规的检验,而且还可以针对病人的不同要求分别检验,减轻病人负担。

3.2 软件及其优化

    本系统的软件分为两部分:一是以单片机为核心的系统控制程序,主要是人机接口程序;二是以DSP为核心的数据处理程序。下面就分别对这两部分进行详细的阐述。

(1)以单片机为核心的系统控制程序

    单片机作为系统的控制核心负责液晶的显示、键盘的扫描及系统的启动和停止。图8是这部分的程序流程图。


(2)以DSP为核心的数据处理程序

    DSP子系统接受单片机传递的操作指令和参数,启动CCD工作,然后,通过QDMA方式从FIFO(数据缓冲作用)里面读取光强数据,调用NNLS算法计算血细胞的尺寸分布。最后,把结果传递给单片机。

    图9是这部分程序的流程图。程序采用C语言与汇编语言混合编写。C语言构成程序的主框架。

 
    程序的优化包数据预处理和采用浮点运算器TMS320C6711的各种优化方法进行数据处理。

    由于测得的散射光强分布信息的数字化信号往往带有电路噪声和随机误差,影响到测量的精度。为使这些数据能更好地反映实际情况,通常要对它们进行一定的预处理,这样才能作为数据处理软件进一步计算的原始数据。我们采集50组光学数据进行平均,来减小相对误差。由于CCD光学探测器的各像元具有空间等间隔特点,故采用五点三次平滑滤波获取血液样品的径向散射光强。

4 结论

    线阵CCD采集和处理系统采用DSP(TMS320C6711)和MCU(89C52)的双CPU处理系统。将DSP的数据处理速度快和MCU的I/O控制能力强的优点结合起来,外加高速AD转化器、异步FIFO,构成了功能强大、计算速度快的光电采集处理系统。该系统在工业信号采集处理、医学信号采集处理等领域都有很广的应用前景。
关键字:TMS320C6711  CCD  89C52  数据采集  数据处理 引用地址:基于TMS320C6711的线阵CCD采集与处理系统

上一篇:基于DSP的感应电机SVPWM矢量控制系统
下一篇:TMS320F240的IDE接口仿真器设计

推荐阅读最新更新时间:2024-05-02 21:06

24位A/D转换称重数据采集系统的设计
   1 引言   组合秤又称选择组合衡器,它是由多个独立的进料出料结构的称量单元组成,电脑利用排组合原理对称量单元的载荷量自动优选组合计算出最佳、最接近目标重量值的重量组合进行包装。选别秤是检测单个产品重量与设定目标是否相符,并由分选装置自动剔除不合标准产品的包装行业设备。从实用角度出发,采用具有24位∑-△型A/D转换器的系统级单片机MSC1210结合低成本的供电解决方案与CAN控制器SJA1000以及CAN总线收发器82C250,设计一种具有CAN总线接口的24位称重数据采集系统,可应用于组合称重设备、选别设备。    2 系统硬件设计   图1为系统硬件结构图。系统硬件采用系统级单片机MSC1210直接采集传感器信号
[模拟电子]
C8051F021型单片机实现数据采集系统
  介绍的功角测量 数据采集 卡是采用Cygnal公司C8051F021型单片机实现的PCI总线接口卡。该卡通过2片双口RAM分别实现与GPS接收板和上位机(PC)的数据交换,从而实现高速、可靠的数据采集、处理与传送。本数据采集卡采用片内12位高速ADC并配以片外采样保持电路,通过直接交流采样方法精确快速地实现对电压和电流的采样,保证了电力系统实时测量的要求。   1 引言   实现自动化的过程中,首要环节就是数据采集。为此我们研究开发了电力系统功角广域测控系统,其中,用C8051F021型单片机实现的数据采集卡不仅可以准确、高效、实时地进行AD数据采集并通过双口RAM和PCI接口与上位机交换数据,还可以通过与GPS接收通
[单片机]
C8051F021型单片机实现<font color='red'>数据采集</font>系统
低轼耗数据采集系统的USB接口设计
摘要:介绍低功非法收入数据采集系统的USB通信接口设计方法。该设计以超低功耗单片机MSP430F13X为主控制芯片,为主控制芯片,连接Cygnal公司的UART转USB芯片CP2101,实现低功耗数据采集系统的USB接口设计。在IAR Embedded Workbench集成开发环境和VC++环境中,编辑单片机与主机的通信协议。该设计具有超低功耗、高集成度和设计简便等优点,适于便携式电子设备的开发应用。 关键词:超低功耗 MSP430 数据采集 USB接口设计 引言 实现系统运行的最小功耗是现代电子系统的普通取向,也是绿色电子的基本要求。采有最小功耗设计方法既能减少电子设备的使用功耗,又能减少备用状态下的功率消耗。在节省能
[应用]
基于单片机的高精度海量数据采集与存储系统
  摘要:为满足在某些恶劣实验环境条件下数据的高精度采集。海量存储以便事后分析的需要,设计出了以MSP430F1611单片机为主控单元,采用16位高精度A/D转换芯片ADS1146实现数据采集;利用大容量TF存储卡实现数据的海量存储,并通过并口转USB芯片及相应的上位机软件实现数据上传以便进行事后分析。目前,该数据采集存储系统已在相关实验项目中得到应用,并获得了良好稳定的实验结果。   0 引言   随着信息技术的发展,特别是各种数字处理器件处理速度的提高,实现海量实时数据处理已成为现实。但是,在一些恶劣实验环境条件下,数据无法实现实时处理,仍需用到存储测试的方法。   存储测试是指在对被测对象无影响或影响在允许范围条件下
[单片机]
基于单片机的高精度海量<font color='red'>数据采集</font>与存储系统
维宏乘风破浪国产CCD系统崛起
近年来,智能手机、平板电脑、触控式笔记本电脑等行业发展迅速,触摸屏是此类电子产品最主要的人机交互工具,因此,研发和制造更轻更薄,透光性更好、操作更为舒适、性价比更高的触摸屏产品具有巨大的商业价值。众多触控模组厂约自2011年开始积极开发OGS(one-glasssolution,单片式玻璃触控面板)解决方案,此方案是当前及未来一段时间内非常重要的一种应用技术,而制造OGS触摸屏的重要步骤就是使用带有机器视觉辅助系统的高精度数控玻璃磨边机对玻璃进行加工。 在这样的背景下,维宏公司于2012年推出了第一款CCD玻璃磨边运动控制系统,通过CCD视觉辅助系统对工件进行高精度的加工,以满足OGS玻璃的生产需要。如今,OGS触控行业
[嵌入式]
USB接口的高速数据采集卡的设计与实现
现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受 计算机 插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采
[应用]
基于DSP与FPGA的蓝牙数据采集系统设计
数据采集系统广泛地应用于工业、国防、图像处理、信号检测等领域。DSP处理器是一种高速的数字信号处理器,蓝牙技术作为一种低成本、低功耗、近距离的无线通信技术,已广泛应用于许多行业和领域 。本设计采用了DSP与FPGA协同控制处理,并用蓝牙传输代替有线电缆传输,有效地解决了DSP和FPGA单独处理的不足与有线电缆传输的弊端,大大提高了数据采集处理能力,拓宽了系统在环境较为恶劣或特殊场所的应用。 1 系统硬件设计 1.1系统总体设计  基于DSP与FPGA的蓝牙数据采集系统由下位机和上位机两部分组成。其中下位机主要由前端传感器、信号调理电路、ADC模数转换电路、DSP与FPGA协同处理模块以及蓝牙模块组成,主要完成前端数据的
[嵌入式]
CS5396/97的超高精度数据采集系统中的应用
    摘要: 24位∑-Δ A/D变换器CS5397/97的特性及其在超高精度数据采集系统中的应用。在给出的由DSP(TMS320C32)、FPGA(XC3064)、FIFO寄存器等构成的实际应用系统中,数据采集的动态范围可达100dB(当正弦信号的峰-峰值为3V时)。     关键词: ∑-ΔA/D变换器 FPGA DSP 在测量、工业控制系统中,A/D变换器的数据采集精度对系统的性能有着至关重要的影响。传统的A/D器件,大都采用逐次逼近方式,而CS5396/97 采用了∑-Δ技术,可实现24位的高分辨率。∑-Δ技术的本质是采用负反馈方式逐步减小输入模拟信号与DAC反馈信号的差值,∑-Δ
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved