TMS320C6000系列与TMS320C54系列的引导方式有很大差别。在开发应用TMS320C6000系列DSP时,许多开发者,尤其是初涉及者对DSP ROM引导的实现有些困难,花费许多时间和精力摸索。笔者结合开发实例,介绍了实现外部存储器引导的具体方法。
DSP的引导过程
DSP系统的引导(BOOT)是指系统加电或复位时,DSP将一段存储在外部的非易失性存储器的程序代码通过DMA方式拷贝到内部的高速内存中运行。这样既能扩展DSP有限的存储空间,又能充分发挥DSP内部资源的效能。用户的代码也可以通过掩膜方式写入到DSP内部ROM中,但这样受容量和价格的限制,且不便于扩展和升级。
DSP的引导过程如下:
1) DSP复位后,通过DMA方式将外部CE1空间的数据读入到内部程序空间地址0处,读入数据的多少因芯片而异(TMS320C6712一次只拷贝1KB)。
2) DSP推出复位状态,开始执行内部程序空间地址0处的程序,这段程序先将外部主程序数据读入到DSP内部程序空间相应地址,然后跳转到主程序运行。
第一步是由芯片自动完成,关键是第二步:用户需要编写相应的汇编程序,实现二次引导,即用户主程序的装载。
引导失败的原因分析
(1)链接命令文件(.cmd)文件
链接命令文件定义了链接的参数,描述系统生成的可执行代码各段的段名及映射到目标板的物理空间。当这些段的起始地址或段的长度编写错误时,引导程序就可能发生错误。
(2)可执行代码的二进制文件格式
用户的程序在CCS开发环境下编译生成COFF文件格式,仿真过程中可以直接加载COFF文件运行。但当调试仿真通过后,目标板要脱离CCS环境独立运行时,可执行代码就需要转换为二进制文件格式,保存在目标板的外部存储器上。转换时需要使用正确的配置文件。
(3)目标板的硬件电路(引导模式,系统时钟)
目标板的硬件电路也会影响引导程序的正常运行,如设置的引导模式与实际的外部存储器不符,系统时钟电路不工作,复位信号恒有效等。
下面结合TMS320C6212的开发实例,具体介绍外部存储器引导的实现。
ROM引导实例
TMS320C6212是TMS320C6201的简化版芯片,内部资源相对较少,工作频率相对较低,但其价格低廉,具有很高的性能价格比。TMS320C6212的工作频率可达150MHz,最高处理能力为900MIPS,很适合中小型系统开发。
由于FLASH是一种高密度、非易失的电擦写存储器,系统采用FLASH作为外部存储器。除了专用的硬件编程器可以把二进制代码写入FLASH中,还可以利用DSP的调试系统,通过软件编程写入。DSP与FLASH的接口连接如图1所示。
系统工程在CCS开发环境下使用C语言编程,这样可以缩短开发周期,提高工作效率,并具有移植性好的优点。引导工程的文件流程如图2所示。
(1) 中断向量表 vectors.asm
中断向量表缺省保存在DSP芯片内部RAM的0地址开始的0x200字节空间,上电或复位后,芯片自动运行复位中断。因此,复位中断向量设置为引导程序(_boot)的入口地址,引导程序的主体在boot.asm中定义。部分程序如下:
.ref _boot ;调用引导程序
.sect “.vectors” ;段声明
RESET_RST: ;复位中断向量
mvkl .S2 _boot, B0 ;装载引导程序地址
mvkh .S2 _boot, B0
B .S2 B0 ;跳转到引导程序执行
NOP 5
(2) 自引导的汇编程序 boot.asm
自引导汇编程序主要是配置基本的寄存器,并将保存在外部FLASH中的二进制程序拷贝到DSP内部的RAM中再执行。由于TMS320C6712自动拷贝1KB,因此起始地址是从0x400开始,汇编程序如下:
.sect “.boot_load” ;定义数据段
.ref _c_int00 ;声明外部函数
.global _boot ;定义全局函数
_boot:
;先设置控制寄存器,如EMIF_GCR等,(略)
;拷贝FLASH中的程序到DSP内部RAM
mvkl 0x00000400, A4 ;A4为RAM地址指针
|| mvkl 0x90000400, B4 ;B4为FLASH地址指针
mvkh 0x00000400, A4
|| mvkh 0x90000400, B4
zero A1 ;A1用作计数器
_boot_loop: ;DSP开始读取FLASH中程序
ldb *B4++, B5
mvkl 0x0000F200, B6 ;B6为需要拷贝的字节数
add 1, A1, A1
|| mvkh 0x0000F200, B6
cmplt A1, B6, A0
nop
stb B5, *A4++
[B0] b _boot_loop
nop 5
mvkl .S2 _c_int00, B0 ;循环结束后,跳转到主函数main执行
mvkh .S2 _c_int00, B0
B .S2 B0
Nop 5
(3) 主程序 main.c
主程序是DSP要实现具体功能的主体,其定义的主函数main()经编译后在函数_c_int00中调用,因此在上面的引导程序结束时,将跳转到函数_c_int00,即主函数main执行。
(4) 链接命令程序 link.cmd
链接命令程序用于定义系统各存储器的地址及大小,并分配编译后各段到相应的存储空间,link.cmd内容如下:
-c
-lrts6201.lib
MEMORY
{
vecs: o = 00000000h =00000200h
BOOT_RAM: o = 00000200h l = 00000200h
IRAM: o = 00000400h l = 0000c400h
CE0: o = 80000000h l = 01000000h
CE1: o = 90000000h l = 00100000h
}
SECTIONS
{
.vectors > vecs fill = 0
.boot_load > BOOT_RAM fill = 0
.text > IRAM fill = 0
.stack > IRAM fill = 0
.bss > IRAM fill = 0
.cinit > IRAM fill = 0
.far > IRAM fill = 0
.sysmem > IRAM fill = 0
.cio > IRAM fill = 0
}
(5) 转换命令程序 convert.cmd
上面的工程文件经CCS系统编译、汇编后生成可执行COFF文件(.out),它需要转换为二进制文件,再写入到FLASH中。CCS开发系统带有转换程序:
hex6x.exe 将可执行COFF文件(.out)转换为十六进制文件(.hex)
hex2bin.exe将十六进制文件(.hex)转换为二进制文件(.bin)
命令行的格式为:
hex6x.exe convert.cmd
hex2bin.exe mboot
其中convert.cmd内容如下:
mboot.out ;输入文件名 .out 格式
-x
-map mboot.map ;生成映射文件
-image
-memwidth 8 ;内存的位宽
-o mboot.hex ;输出文件名 .hex格式
ROMS
{
FLASH: org = 0, len = 0x10000, romwidth = 8
}
结束语
综上所述,实现TMS320C6712的外部内存自引导并不复杂,关键是要理解芯片的自引导过程和程序汇编后各部分的作用,配置好引导代码段和程序代码段的实际物理地址,并且正确地初始化相应的寄存器和变量。
关键字:DSP TMS320C6712 外部内存 自引导功能
引用地址:DSP芯片TMS320C6712的外部内存自引导功能的实现
DSP的引导过程
DSP系统的引导(BOOT)是指系统加电或复位时,DSP将一段存储在外部的非易失性存储器的程序代码通过DMA方式拷贝到内部的高速内存中运行。这样既能扩展DSP有限的存储空间,又能充分发挥DSP内部资源的效能。用户的代码也可以通过掩膜方式写入到DSP内部ROM中,但这样受容量和价格的限制,且不便于扩展和升级。
DSP的引导过程如下:
1) DSP复位后,通过DMA方式将外部CE1空间的数据读入到内部程序空间地址0处,读入数据的多少因芯片而异(TMS320C6712一次只拷贝1KB)。
2) DSP推出复位状态,开始执行内部程序空间地址0处的程序,这段程序先将外部主程序数据读入到DSP内部程序空间相应地址,然后跳转到主程序运行。
第一步是由芯片自动完成,关键是第二步:用户需要编写相应的汇编程序,实现二次引导,即用户主程序的装载。
引导失败的原因分析
(1)链接命令文件(.cmd)文件
链接命令文件定义了链接的参数,描述系统生成的可执行代码各段的段名及映射到目标板的物理空间。当这些段的起始地址或段的长度编写错误时,引导程序就可能发生错误。
(2)可执行代码的二进制文件格式
用户的程序在CCS开发环境下编译生成COFF文件格式,仿真过程中可以直接加载COFF文件运行。但当调试仿真通过后,目标板要脱离CCS环境独立运行时,可执行代码就需要转换为二进制文件格式,保存在目标板的外部存储器上。转换时需要使用正确的配置文件。
(3)目标板的硬件电路(引导模式,系统时钟)
目标板的硬件电路也会影响引导程序的正常运行,如设置的引导模式与实际的外部存储器不符,系统时钟电路不工作,复位信号恒有效等。
下面结合TMS320C6212的开发实例,具体介绍外部存储器引导的实现。
ROM引导实例
TMS320C6212是TMS320C6201的简化版芯片,内部资源相对较少,工作频率相对较低,但其价格低廉,具有很高的性能价格比。TMS320C6212的工作频率可达150MHz,最高处理能力为900MIPS,很适合中小型系统开发。
由于FLASH是一种高密度、非易失的电擦写存储器,系统采用FLASH作为外部存储器。除了专用的硬件编程器可以把二进制代码写入FLASH中,还可以利用DSP的调试系统,通过软件编程写入。DSP与FLASH的接口连接如图1所示。
系统工程在CCS开发环境下使用C语言编程,这样可以缩短开发周期,提高工作效率,并具有移植性好的优点。引导工程的文件流程如图2所示。
(1) 中断向量表 vectors.asm
中断向量表缺省保存在DSP芯片内部RAM的0地址开始的0x200字节空间,上电或复位后,芯片自动运行复位中断。因此,复位中断向量设置为引导程序(_boot)的入口地址,引导程序的主体在boot.asm中定义。部分程序如下:
.ref _boot ;调用引导程序
.sect “.vectors” ;段声明
RESET_RST: ;复位中断向量
mvkl .S2 _boot, B0 ;装载引导程序地址
mvkh .S2 _boot, B0
B .S2 B0 ;跳转到引导程序执行
NOP 5
(2) 自引导的汇编程序 boot.asm
自引导汇编程序主要是配置基本的寄存器,并将保存在外部FLASH中的二进制程序拷贝到DSP内部的RAM中再执行。由于TMS320C6712自动拷贝1KB,因此起始地址是从0x400开始,汇编程序如下:
.sect “.boot_load” ;定义数据段
.ref _c_int00 ;声明外部函数
.global _boot ;定义全局函数
_boot:
;先设置控制寄存器,如EMIF_GCR等,(略)
;拷贝FLASH中的程序到DSP内部RAM
mvkl 0x00000400, A4 ;A4为RAM地址指针
|| mvkl 0x90000400, B4 ;B4为FLASH地址指针
mvkh 0x00000400, A4
|| mvkh 0x90000400, B4
zero A1 ;A1用作计数器
_boot_loop: ;DSP开始读取FLASH中程序
ldb *B4++, B5
mvkl 0x0000F200, B6 ;B6为需要拷贝的字节数
add 1, A1, A1
|| mvkh 0x0000F200, B6
cmplt A1, B6, A0
nop
stb B5, *A4++
[B0] b _boot_loop
nop 5
mvkl .S2 _c_int00, B0 ;循环结束后,跳转到主函数main执行
mvkh .S2 _c_int00, B0
B .S2 B0
Nop 5
(3) 主程序 main.c
主程序是DSP要实现具体功能的主体,其定义的主函数main()经编译后在函数_c_int00中调用,因此在上面的引导程序结束时,将跳转到函数_c_int00,即主函数main执行。
(4) 链接命令程序 link.cmd
链接命令程序用于定义系统各存储器的地址及大小,并分配编译后各段到相应的存储空间,link.cmd内容如下:
-c
-lrts6201.lib
MEMORY
{
vecs: o = 00000000h =00000200h
BOOT_RAM: o = 00000200h l = 00000200h
IRAM: o = 00000400h l = 0000c400h
CE0: o = 80000000h l = 01000000h
CE1: o = 90000000h l = 00100000h
}
SECTIONS
{
.vectors > vecs fill = 0
.boot_load > BOOT_RAM fill = 0
.text > IRAM fill = 0
.stack > IRAM fill = 0
.bss > IRAM fill = 0
.cinit > IRAM fill = 0
.far > IRAM fill = 0
.sysmem > IRAM fill = 0
.cio > IRAM fill = 0
}
(5) 转换命令程序 convert.cmd
上面的工程文件经CCS系统编译、汇编后生成可执行COFF文件(.out),它需要转换为二进制文件,再写入到FLASH中。CCS开发系统带有转换程序:
hex6x.exe 将可执行COFF文件(.out)转换为十六进制文件(.hex)
hex2bin.exe将十六进制文件(.hex)转换为二进制文件(.bin)
命令行的格式为:
hex6x.exe convert.cmd
hex2bin.exe mboot
其中convert.cmd内容如下:
mboot.out ;输入文件名 .out 格式
-x
-map mboot.map ;生成映射文件
-image
-memwidth 8 ;内存的位宽
-o mboot.hex ;输出文件名 .hex格式
ROMS
{
FLASH: org = 0, len = 0x10000, romwidth = 8
}
结束语
综上所述,实现TMS320C6712的外部内存自引导并不复杂,关键是要理解芯片的自引导过程和程序汇编后各部分的作用,配置好引导代码段和程序代码段的实际物理地址,并且正确地初始化相应的寄存器和变量。
上一篇:基于DSP2407的中频电源测试系统的设计
下一篇:基于TMS320C6x11系列DSP的图像获取方案
推荐阅读最新更新时间:2024-05-02 21:20
TMS320VC5402 DSP与单片机的HPI接口实现
TMS320VC5402(VC5402)两个可编程的多通道缓冲串口(McBSP)能够全双工、快速地与其他同步串口进行数据交换,硬件连接简单,串口的工作模式和传送数据的格式可通过编程实现。DSP和单片机之间的通信一般利用双口RAM,通过串口或DSP的HPI接口实现。 利用双口RAM实现 CY7C026是CYPRESS公司生产的16k×16B高速双口静态RAM,存取速度小于25ns。他具有真正的双端口,可以同时进行数据存取,两个端口具有独立的控制信号线、地址线和数据线,另外通过主?从选择可以方便地扩存储容量和数据宽度。通过芯片的信号量标志器,左、右两端口可以实现芯片资源的共享。 由于DSP的数据是16位,而单片机
[单片机]
德州仪器设立创新基金和杰出教育者奖
德州仪器在中国新设“德州仪器创新基金”和“德州仪器杰出教育者奖”。从2008年起,新的基金和奖项将用以支持中国大学的素质教育、科研项目和奖励运用半导体技术进行教学和科研的教育工作者。 TI的中国大学计划始于1996年,12年来已协助中国的141所大学建立超过160个实验室。 此次TI推出的“创新基金”和“杰出教育者奖”,旨在鼓励技术创新,培养专业人才,顺应了中国半导体产业发展的需要,并将进一步促进科研成果向可行性大规模应用的转化,同时也使得TI与中国大学间的合作进一步加强。在这两个奖项的带动下,中国将有更多的电子专业师生熟悉TI的产品和技术,并致力于开展科学研究和创新试验。学生中的一些人毕业后将顺利地加入到TI或其
[焦点新闻]
基于FPGA+DSP远程监控器设计与实现
项目研究的目的和主要研究内容 研究目的 为了远程对现场进行设备管理和环境监控,并简化现场监控设备,有效地提高整个系统的稳定性和安全性。拟开发一款远程控制器,简称RCM远控器。该远控器将集现场数据采集、多种通信协议转换、故障告警、应急控制、智能联动、内嵌WEB配置页等多项功能。 主要研究内容 1.远程监控系统 远程监控系统总体结构(如图1所示),其中主要研究内容为RCM远控器。 图 1 远控器通过RJ45与TCP/IP网络开放式网络相连;远程浏览站通过远控器的IP地址和密码浏览并获取信息;远程监控中心则通过网络对远控器实施实时监控。在这里,远控器是一台具有数据采集、数据传输和智能处理的微型
[嵌入式]
Tensilica发布第二代ConnX基带DSP引擎,以满足LTE/4G无线手机及基站算法需求
Tensilica日前发布第二代基带引擎ConnX BBE16,用于LTE(长期演进技术)及4G基带SoC(片上系统)的设计。ConnX BBE16的16路MAC(乘数累加器)架构经过特别优化,以满足无线DSP(数字信号处理)算法需求,包括:OFDM(正交频分复用)、FFT(快速傅氏变换)、FIR(有限脉冲响应)、IIR(无限脉冲响应)以及矩阵运算。ConnX BBE16针对芯片面积以及低功耗应用进一步优化,相比原先的ConnX BBE在某些关键算法上提供高达三倍的性能。该架构适用于可编程无线手持设备、家庭型基站、超微蜂窝基站、微蜂窝和宏蜂窝基站、数字媒体广播接收器、及多格式移动DTV(数字电视)解调的SoC设计。 Tensi
[模拟电子]
基于DSP的语音信号处理系统中的抗干扰技术
l 引言 目前,由于具有运算速度快、片上资源丰富和能够实现复杂的线性和非线性算法等特性,DSP已成为通信、计算机和消费电子产品等领域的基础器件,其中在语音信号处理技术方面显得尤为突出。然而,由于包括DSP本身在内的所有电子器件都是干扰源,而且系统所处的工作环境中还有很多外来干扰源,再加上语音识别技术对信号噪声非常敏感,所以在系统设计中必须考虑系统的抗干扰问题。否则,至少会影响系统的处理结果,甚至造成更为严重的后果。本文介绍基于DSP的语音信号处理系统中的抗干扰技术。 2 系统的干扰源和干扰途径 基于DSP的语音信号处理系统中的干扰源主要有雷电放电造成的大气噪声源、太阳黑子运动等造成的天电噪声源、电阻等电子元器件工
[模拟电子]
基于DSP的手势识别电视遥控器设计
[嵌入式]
基于DSP的G.729语音编解码算法的优化和实现
随着多媒体信息技术和网络技术的飞速发展,信息量快速增长,使信道资源显得越来越宝贵。为了在有限的信道资源下传输尽可能多的信息,语音压缩成为必要手段。ITU组织(国际电信联盟)在l996年制定了G.729协议,即共轭结构码激励线性预测编码算法(CS-ACELP)。其编码速率为8kb/s,可以满足网络通信的要求,具有良好的语音质量,对不同的应用环境有较强的适应性,是一种性能较好的语音压缩国际标准,被广泛应用在个人移动通信、卫星通信等各个领域。 1 G.729编解码算法的原理 语音信号的波形编码力图使重建语音波形保持原始语音信号的波形形状。这类编码器通常将语音信号作为一般的波形信号来处理,它具有适应能力强、语音质量好等
[嵌入式]
纵览全球半导体,从容走过中国电子业“严冬”
在深圳第八届高交会开幕前一天,一场由创意时代会展主办,国际著名半导体分析机构iSuppli与著名半导体厂商德州仪器、飞思卡尔、NXP、NEC等公司参加的全球半导体市场大会,使得高交会的热潮提前到来,这些半导体产业的专家引导听众从全球半导体的趋势看中国OEM/ODM未来的机会、并帮助中国电子业制定未来的市场战略。 “从全球半导体需求来看,2006年来自DRAM、闪存、DSP、标准线性IC(电源IC)以及图像传感器领域的增长率最大,均达到了2位数以上增长率,从这个趋势可以看出需要这些器件的电子产品是最热的产品,比如PC、手机、便携设备、数字电视等。”iSuppli副总裁Dale Ford在大会开场白中首先指出。他接着分析说,2006
[焦点新闻]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月17日历史上的今天
厂商技术中心