基于DSP的中频电源测试系统设计

发布者:CW13236066525最新更新时间:2011-06-10 来源: elecfans关键字:电源测试 手机看文章 扫描二维码
随时随地手机看文章
   

    目前,115V/400 Hz电源广泛应用于航空、航天等军用设备中,军用设备一般对频率精度要求较高,因此必须对其进行测试,使其满足军用标准。本设计利用数字信号处理器(DSP)对数字信号强大的处理能力,对交流电压与频率进行测试、分析与计算,以达到对中频电源性能进行评估的目的。

  1 系统硬件设计

  11 系统硬件框图

  系统的硬件框图由4部分组成:电压信号调理模块、频率信号调理模块、DSP2407最小系统和液晶显示模块,系统硬件框图如图1所示。被测信号(电压信号)经信号调理模块降压滤波后,接至DSP的ADCIN00端进行信号采集与A/D转换,而被测信号(频率信号)经信号调理模块降压、滤波且转化为同频方波后,接至DSP的CAP端进行捕获。DSP2407是整个系统的核心,其功能则是接收A/D端和捕获CAP端的信号,对其进行分析计算,最后对数据进行存储显示。

  12 信号调理模块

  被测信号电压为-115~115V,而DSP的输入要求则是0~3.3 V,因此需对被测电压信号进行调理。被测电压信号经降压、滤波等处理后,才能进入DSP进行A/D转换。电压信号调理电路如图2所示。

  图2中电压传感器选用的是精密电压互感器SPT204A,输入额定电流为2 mA,额定输出电流也为2 mA。电压互感器的输入端需调节R1使输入电流为2 mA,而互感器的输出端是电流/电压转换电路,调节反馈电阻R2与R3可得所需电压。2个反接二极管起保护放大器的作用。该互感器的特点是电磁隔离、精度高、无漂移,而且对干扰具有很好的抑制作用。滤波部分为一阶低通滤波器,目的是消除对系统影响较大的高频信号。被测信号经电压互感器调理后,转化成-3~3 V的电压信号,而DSP2407自带的A/D转换器是单极性的,因此在互感器电路后接电压抬升电路,进一步调整电压信号,将其转化为0~3 V的电压信号后,再进行A/D转换。

  频率信号调理模块的降压滤波部分与电压信号调理电路基本一致,只是不需再将电压信号抬升,而是需经过电压比较器LM311将正弦电压信号转化为同频率的方波信号,最后通过分压电路进一步调整幅值,使其适合DSP捕获端的输入范围。进一步调理电路如图3所示。

  13 液晶显示

  液晶显示器(LCD)是提供友好人机界面实现信息人机交互的关键器件。由于LCD具有低功耗、体积小、质量轻等诸多其他显示器无法比拟的优点,它成为测量结果显示和人机对话的重要工具。本系统选用的SPRT12864M液晶显示模块是128×64点阵的图形点阵式液晶显示模块。

  DSP2407与LED之间的接口电路如图4所示。其中DSP的IOPE0~IOPE7用作数据接口,与LCD模块的数据线DB0~DB7相连,完成与LCD间的数据传送;IOPC0与RS(CS)相连,为指令/数据选择位,H为数据选择位,L为指令选择位;IOPC1与R/W脚相连,为读/写选择位,H为写信号,L为读信号;IOPC2与E相连,工作状态使能;RET是液晶显示模块的复位端,直接连接到DSP的复位引脚RS,当系统复位时,LCD同时复位;VDD接+3.3 V输入电源。

  2 系统软件设计

  DSP是整个测试系统的核心,而软件编程又是这一核心的灵魂。整个DSP系统在Code Composer Setup编译环境下开发,采用汇编语言和C语言相结合的编程方式,完成对整个测试系统的软件设计。

  21 电压数据采集子程序

  电压数据采集是直接通过TMS320LF2407自带的模数转换模块(ADC)实现的。首先对ADC进行初始化,确定ADC通道的级联方式,采样时间窗口预定标,转换时钟预定标等。然后启动ADC采样,对电压信号进行采集,采样8次。由于得到的数据被默认存储到ADC转换结果寄存器(RES-ULT0~7)的高10位中,因此定义1个数组,将RESULT n中的值经过移位还原后存储到相应的数组中。A/D转换结束后,则转入中断服务程序,对采样得到的数据进行分析和处理。电压信号数据采集子程序的流程图如图5所示。

  22 频率数据采集子程序

  交流电压频率的采集是通过DSP2407的捕获引脚,对频率信号调理模块输出的方波上升沿时的时钟进行捕获得到的,然后在频率采集信号数据处理部分根据相邻时钟差值求出其对应的频率值。频率信号数据采集子程序流程如图6所示。

  3 结束语

  该系统是基于DSP的中频电源测试系统的设计,构建了以DSP为控制核心的测试系统,并对电压互感器SPT204A的外围电路进行了设计和改进,对交流电压输出与所需输入建立了一种平台,提出了一种电压信号调理的新思路,具有结构简单,性能良好等优点,可推广使用到其他中频军用设备以及民用设备的系统测试中。

关键字:电源测试 引用地址:基于DSP的中频电源测试系统设计

上一篇:基于数据采集系统中的DSP控制回路设计
下一篇:基于FPGA的SPI总线在软件接收机上的应用

推荐阅读最新更新时间:2024-05-02 21:26

电源测试大全(一):极限测试
  1.模块输出电流极限测试   模块输出电流极限测试是测试模块在输出限流点放开(PFC的过流保护也要放开)之后所能输出的最大电流,测试的目的是为了验证模块的限流点设计是否适当,模块的器件选择是否合适。如果模块的输入电流极限值偏小,表明模块的输出电流量不够;如果模块的输出电流极限值设计过大,表明模块的输出电流裕量过高,模块的成本还可以降低。    测试方法:   将模块的输出限流点放开,按额定输出电流的5%逐步增加模块的输出电流,每个电流值保持10分钟,直至模块损坏(或输出熔断丝断),记录模块损坏时的输出电流值即为模块的输出电流极限值。为了防止在测试过程中模块出现积热损坏,每一个测试点测试完成之后,须将模块冷却到测试前的冷机
[电源管理]
过载测试——电源测试您所忽视的问题
  电源作为电子产品或者电池的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要。如过压、过流、过温保护等,本次以恒压源的过流保护为例进行介绍。      首先,过流保护,不仅要测试过流保护点,还要测试过流保护时间和保护稳定性。      过流保护点测试,也就是OCP(over current protection)测试。根据保护方式有3种,电流收敛甚至切断,恒流,电流增大。如果比较繁杂的大功率电源系统会分多个阶段,就不在这里讨论了。对于保护方式1,OCP点一般为额定值的110%到130%。      以前,是手工去调整电流的大小,人工观察现象。但是手和眼睛的反应速度等因素导致要进行多次测量才能确定
[测试测量]
LED电源测试中电子负载的误区讲解及解决
想要提高LED电源的测试效率,最快捷简便的方法就是选择恰当的电子负载。如果对电子负载的知识不够熟悉,或者熟练度不够无法掌握的话,甚至会造成测试结果的置信度下滑,从而影响到产品的质量,严重的还会引发事故。本篇文章主要讲述电子负载CV的原理,并对LED电源测试的一些误区进行介绍。 电子负载的CV模式带载,是LED电源测试的基础。CV,便是恒定电压,但负载只是电流拉载的设备,自身不能提供恒定电压,因此,所谓的CV,仅仅是通过电压负反馈电路,来伺服LED电源输出电流的变化,使LED输出电容上的电荷平衡,进而达到恒定电压的目的。因此,决定CV精度的核心因素有2个: 负载带宽 LED电源输出电容的大小 当LED电源输出电流的纹波频率很高
[测试测量]
平台化电源测试及应用
测试,是保证产品质量与品质必不可少的一个环节,制造商需要更精准、更灵活、更经济的测试系统。发展越迅速的产业以及应用越广泛的产品,对测试与相关技术的要求就越严格与多变,正如电源产业迅速发展所带来的测试工作的巨大挑战。 实际需求驱动电源测试工作不断改善 电源在生活中随处可见,从消费类电子产品到军事装备和工业设施,众多电子设备都需要电源以确保正常运行。从原理上来看,常见的电源实例包括通信用AC-DC开关电源和DC-DC开关电源,除了上述两类,针对某特定应用的特种电源也比比皆是,无论哪种电源,其测试过程都是巨大的挑战,主要集中在以下几个方面。 1.指标与功能的不断提升 1) 电源的拓扑结构日趋复杂:开关电源技术发展至今,已经由当初的三种基
[电源管理]
平台化<font color='red'>电源测试</font>及应用
电源测试一体化解决方案
  本系统是爱科电子最新推出的基于虚拟仪器技术,专门针对电源、汽油机、等电源电性能测试的一种具有超高性价比的自动化测试设备。   系统以开放式的软件架构和现代化数据库技术为核心,结合高精度可编程电源、高性能可编程电子负载等设备为基础的模块化硬件设计,为您提供了真正的全自动电源测试解决方案。整个系统结构紧凑,功能完备、自动化程度高,测量快速准确,测试报告处理完善,可大大提高检测效率。   主要功能特点:   ·模块化硬件结构设计,硬件扩充方便,测量准确度高   ·测试规程编辑功能,便于重复测量   ·测试项目编辑功能   ·系统预设测试规程,提高测试速度,提高生产效率   ·测试报表编辑制作、统计分析和数据库管理功能   ·测试软件
[电源管理]
<font color='red'>电源测试</font>一体化解决方案
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved