基于CPCI接口DSP板的雷达目标模拟器

发布者:平安心境最新更新时间:2011-08-08 关键字:模拟器  雷达目标 手机看文章 扫描二维码
随时随地手机看文章
   

 提出一种基于CPCI接口DSP板的C波段雷达目标模拟器。探测回波模拟,采用软硬件相结合的方法。由主控计算机根据雷达工作参数预先设定并计算目标数据,然后将数据加载到硬件电路中。硬件电路实时合成雷达回波信号并输出。利用DSP/FPGA的高速计算性能、直接数字合成(DDS)技术和数字射频存储(DRFM)技术,可以实现相位编码、线性调频、非线性调频等多种复杂方式下的目标回波信号的实时模拟,检测雷达的跟踪精度、角精度等指标。

  1 功能及系统组成

  所设计的多目标雷达模拟器为配合某型宽带雷达系统进行设备调试和功能检查。模拟器将雷达发射波形经延迟、幅度相位调制和多普勒频移等形成模拟目标回波,通过天线发送或直接注入给试验雷达系统。目标回波信号包括目标的距离、角度、速度、雷达散射截面积(RCS)、一维距离像等信息。

  系统总体指标要求如下:双通道输出;频率范围为5.2~5.8 GHz;窄带瞬时带宽为10 MHz;宽带瞬时带宽为500 MHz;目标数目1~22个;幅度控制范围为0~127 dB,量化单位不大于0.5 dB;RCS幅度控制速率为1μs,距离变化幅度控制1 ms;目标延迟时间:2~4 000μs;多普勒频移范围±400 kHz;相位噪声不大于-90dBc/Hz@1 kHz;窄带时杂散电平不大于-55 dBc;宽带时杂散电平不大于-45 dBc;距离模拟精度≤1.5 m;多普勒模拟精度<1 Hz;输入功率为-45~+30 dBm;输出最大功率20 dBm。

  C波段雷达目标模拟器由微波分系统、基带分系统、宽带分系统、电源控制分配组件和软件等组成,如图1所示。微波分系统包括接收组件、发射组件、频率源组件和电源等。基带分系统主要由主控计算机、数字管理单元(DMU)、接口控制单元、双通道可编程数字延迟线(PD-DL)、时钟产生和分配电路、中频调制解调组件和电源等部分组成。窄带目标模拟主要由基带分系统和微波分系统实现。

  

C波段雷达目标模拟器

 

  宽带目标模拟主要由基带分系统控制宽带分系统实现,如图2所示。输出通过微波分系统与窄带目标信号一起输出。电源控制分配组件完成系统主电源的控制、分配、保护和指示等功能。

  

宽带目标模拟

[page]

  2 目标回波模拟

  2.1 窄带目标回波产生

  本宽频带射频模拟器接收雷达系统的发射信号、控制信号和参考信号。系统输出模拟窄带目标回波信号前,在主控计算机上加载所有目标、诱饵的运动轨迹参数,如延迟参数和径向运动速度,以及每个目标、诱饵的幅度/相位目标特性文件。

  仿真开始后,DMU按照雷达系统发出的模式、参数和触发信号,分别控制窄带系统中的双通道PDDL和中频调制组件产生基带延时目标信号,通过发射组件实现上变频和雷达目标的距离、幅度调制控制,滤波后形成窄带目标回波信号输出,如图3所示。

  

窄带目标回波信号输出

 

  2.2 宽带目标回波产生

  宽带目标回波的产生通过对预先存储在存储器中的雷达宽带LFM的基带分量和目标特征参数直接计算,实时生成多散射点合成目标的波形数据实现。如图4所示,宽带分系统中的所有信号都与试验雷达系统的参考信号同步,保证回波信号与雷达系统相参,实现正确的模拟。

  

波形数据实现

 

  输出宽带目标回波信号前,在计算机上加载输出目标散射点的运动轨迹参数和目标特性文件。当雷达系统发射宽带LFM信号时,宽带目标回波的基带数据由DSP计算并加载到任意波形发生器(AWG)的存储器中。DMU产生宽带分系统的延时触发脉冲和波形选择信号,控制AwG输出模拟基带回波信号,将该基带信号进行正交调制后,通过上变频就得到宽带信号的目标回波。目标特征数据通过CompactPCI总线加载到DSP中参与波形计算。

  宽带回波信号的更新率决定于AWG的数据更新率。这种数字方法原理简单,模拟目标灵活,精度非常高,信号质量较高。缺点是成本较高,实时性受硬件速度、波形复杂度等限制,不容易提高。

  

DSP模块

 

  如图5所示,DSP模块中有两个TMS320C6455高性能DSP、存储器和大规模FPGA,完成特征数据接收、波形计算更新和数据传输等功能,是AWG的核心控制部分。AWG模块的FPGA采用Xilinx公司的XC4VLX25-FF668。IQ信号通路的DAC选用两片Atmel公司的1GHz 10位TS86101G2B,且两路DAC相互独立且保持信号的同步。其单路瞬时带宽可达400 MHz,与正交调制器配合可输出复杂的调制信号。

  3 系统工作流程

  系统初始化完成后,设备进行加电自检。自检通过后由系统操作员进行仿真场景文件加载,包括系统参数、目标数量、轨迹、目标特性等。启动仿真后,模拟系统中的宽带和窄带分系统是同时工作的,受基带分系统中的DMU的控制,如图6所示。

  

基带分系统中的DMU
[page]

 

    4 DSP软件实现

  4.1 基带分系统的数字管理单元

  DMU是系统的核心控制单元。DMU采用CompactPCI接口,板载总容量4百万门的Xilinx Vhrex-2Pro FPGA,所采用的DSP为TI的TMS320C6416系列,处理器频率为600 MHz,同时板上提供了1 GB大容量的DDR存储器。

  为了模拟试验雷达的回波信号,必须要在基带上对雷达探测射频信号进行相位和频率的调制,并且还要根据雷达所在场景的不同对回波信号做一定的延迟。DMU通过CPCI单板内的DSP将相关的场景参数,如目标数量、目标延时、目标速度、回波的幅度和相位特征调制等相关参数实时加载到FPGA内部,然后通过FPGA控制PDDL产生所被探测目标的延迟回波信号。DSP控制DDS子板完成信号的相位特征调制,并完成多普勒频率偏移调制,通过对中频调制解调组件的幅度控制来实现幅度特征调制。

  目标的特征调制数据以.tea文件格式预先存储在操控计算机的硬盘。仿真运行时,主控计算机通过CompactPCI接口连续写入DMU,DMU将其中的幅度数据通过CPCI接口的J4/J5输出到中频调制组件实现对目标信号的幅度特征调制。DMU板载的DDS模块通过FPGA接口,采用AD9858实现,工作时钟频率为1 GHz。3块DDS子板用以接收通道的本振产生和发射双通道的本振输出,如图7所示。

  

发射双通道的本振输出

 

  4.2 宽带分系统的任意波形发生器

  宽带分系统的探测目标为成像目标,试验雷达所发射的信号为500 MHz带宽的线性调频波LFM,其脉宽为128/256/512/1024μs。

  按照雷达发射宽带LFM射频波形的参数,采用预先存储LFM的I/Q基带分量数据在DSP的片外DDR的方法;在雷达场景参数、目标参数有更新时,DSP利用ED-MA操作将片外DDR的基带IQ波形数据搬移至DSP的L2存储区,与目标幅度特征参数进行乘累加运算,同时将目标延迟信息调制到基带波形。DSP实现I/Q数据预先存储的方法须借助宽带上变频单元的DDS实现频率、相位实时调制。

  在一次仿真过程中,目标散射点个数不发生变更。散射点的模拟个数为0~5个;0表示没有成像目标需要仿真。而对于一次仿真过程,目标散射点的延迟、幅度、速度参数会以数据帧的方式提前下发到宽带分系统两片6455DSP的片外DDR存储区做I/Q分量计算;存储区的基地址为0xE0000000。每帧数据包含16个双字;按照最小场景更新周期10 ms计算,30 min仿真时间需要加载的参数总量为约11 MB的数据量。

  根据雷达发射机可能选用的参数,利用CCS软件进行任意波形算法的设计验证、运行时间估算及程序优化,提高目标特性数据的实时计算速率,满足雷达场景更新要求小于等于100 ms。仿真的控制主要包括仿真过程中标志寄存器的复位以及每次仿真所涉及的目标散射点个数。两片DSP定义的仿真控制寄存器的基地址DSP_BaseAdd都为0x009FFE00;另外,DSPA的CE4空间映射有FPGA的片内寄存器。C6455 DSP的C程序如下:

  

C6455 DSP的C程序

 

  

C6455 DSP的C程序

 

  上电后,TMS320C6455首先完成PLL、EMIFA、DDR2的时序配置。AWG板双C6455 DSP的主频都为1 GHz;板上所载的IDT的双端口RAM IDT70 T3509有3片。其中两片位于两片6455 DSP之间,各自端接两个DSP的EMI-FA总线,主要用于双DSP之间的数据交换,另外一片两端都端接在FP-GA,没有直接和DSP EMIFA接口连接。文中的任意波形发生器的IQ通道特征数据的计算不会涉及到DSP之间的数据交换,故宽带目标的雷达回波IQ数据写入到FPGA片内的2K字的DPRAM中。

  5 总结

  本模拟器是采用的是操控计算机加DSP和FPGA的组合结构。DSP信号处理技术要充分利用DSP的信号处理库和内联函数,并合理地进行功能分割以进行充分的优化,这样才能得到最优的总体性能。

关键字:模拟器  雷达目标 引用地址:基于CPCI接口DSP板的雷达目标模拟器

上一篇:TMS320F2808实现矢量控制变频调速系统
下一篇:印刷品数字水印检测器的实现

推荐阅读最新更新时间:2024-05-02 21:31

DSP完成的实时信号模拟器
前言   在通信、雷达等数字信号处理系统的设计中,信号模拟器发挥着至关重要的作用。模拟器用来模拟实际工作过程中信号处理系统的各种输入信号,从而方便了系统调试。可以利用现有仪器模拟这些信号,也可以设计专门的模拟器。这两种方法各有特点:仪器模拟省去了模拟器的设计和调试过程,比较方便;但有时现有仪器并不能完全满足系统测试的要求,另外有些仪器的价格相当昂贵(专用的信道仿真设备一般在24000到500000美元之间 )。因此,在信号模拟的方法上应视实际情况而定:对于ADC这样输入信号比较简单的的系统,可以利用任意波形发生器这些测试仪器进行测试;而对需要多输入或输入信号种类比较多的系统一般需要设计专用的模拟器。一般来说,能用容易得到仪器完成
[嵌入式]
利用Virtex器件实现子空问法雷达目标一维像识别
1 引言 目标识别作为现代雷达的重要发展方向之一,成为未来武器系统中的一个重要组成部分和当前国内外关注的热点,具有广泛的民用和军事应用价值。根据雷达的探测手段及应用背景的不同,出现了多种识别方法,其中雷达成像识别技术作为雷达目标识别的一种新技术正在日趋成熟。而与二维成像雷达相比,易于实现的一维成像雷达(高距离分辨率雷达)在目标识别方面有着广阔的前景 。 文献 对基于一维距离像的子空间方法进行了广泛而深入的研究,在普通特征子空间的基础上,提出了正则子空间法、修正特征子空间法、综合子空间法、子空间串法等多种子空间法,在对仿真与实测数据的识别中均取得较好的效果。其中部分算法的FPGA实现研究正是本文研究的主要任务。 CORDIC算
[网络通信]
太阳模拟器测试非晶硅薄膜的注意点
太阳电池,也称为光伏电池,是将太阳光辐射能直接转换为电能的器件,而测量太阳能电池的效率是通过用辐射强度计测定入射太阳光的功率和测量电池在最大功率点产生的电功率的办法来实现。使用这种方法存在的困难是被测电池的性能在很大程度上取决于太阳光光谱成分,但是光谱成分的精确程度受到季节变化、地区差异和气候条件等各种因素的影响,加上辐射强度计刻度误差,使测量结果难以精确和稳定。在大多生产厂家,使用模拟太阳光的室内模拟器进行太阳能电池效率的测试,室内模拟器的光强和光谱分布是用经标准太阳光定标的标准片来校准的。 目前一些实验室或者测试机构,经常用晶硅太阳电池作为标准件来测试非晶硅薄膜太阳电池,导致严重的测量误差,从而使得很多人对非晶硅薄膜的性能产生
[新能源]
基于STM32的多色温多星等输出的单星模拟器系统设计
0 引言 随着近年来我国空间科学技术的快速发展,卫星、载人飞船等航天器需要更高的控制精度、可靠性和更长的寿命。星敏感器在各种航天器上大量应用,其性能指标直接影响到测量结果的可信度。单星模拟器是星敏感器的主要地面标定设备之一,所要实现的功能是在实验室内提供与单颗真实恒星在光度特性、光谱特性等方面趋于一致的模拟恒星 。传统单星模拟器大多体积大,精度低,稳定性不够好,可调节色温单一,实现星等范围小 。本项目采用模块化设计,将多束不同窄带光谱、不同强度的光线混合,并控制总体输出光强,最终实现不同等效黑体色温和不同星等。 1 结构设计 如图1 所示,单星模拟器系统总体结构由电源、光源、波段光强控制器、积分球、星等控制器、工控箱、PC
[单片机]
基于STM32的多色温多星等输出的单星<font color='red'>模拟器</font>系统设计
Vishay推出高力密度、高分辨的小型触控反馈执行器
Vishay推出高力密度、高分辨的小型触控反馈执行器,适用于触摸屏、模拟器和操纵杆 可定制器件采用小型两件式结构,工作温度达+105 C,适用于各种恶劣商用环境 宾夕法尼亚、MALVERN — 2021年11月12日 — 日前,Vishay Intertechnology, Inc.宣布,推出适用于商用触摸屏、操纵杆和触摸开关面板的新型可定制触控反馈执行器---IHPT-1411AF-AB0。Vishay 定制电磁式IHPT-1411AF-AB0为小型两件式结构,带安装孔,便于安装和直接操作,具有高冲击脉冲和振动能力,可在嘈杂环境下或任何需要产生动作机械响应的场合提供清晰的触觉反馈。 这款触控反馈执行器的工作温度可
[电源管理]
Vishay推出高力密度、高分辨的小型触控反馈执行器
Arralis推远程3D目标探测雷达 可在300米范围的恶劣条件下探测物体
(图片来源:Arralis官网) 据外媒报道,总部位于爱尔兰利默里克的Arralis公司宣布推出新款E-band车用雷达系统Corvus雷达。据该公司所说,其Corvus雷达在探测范围、仰角分辨率和扫描面积等方面超过了目前汽车市场上的雷达,而且该雷达能够在±45°方位角和±7°仰角的300米范围内,对3D目标进行多次探测。Arralis公司在贝尔法斯特设有设计中心,主要为航天/卫星和安全市场生产射频、微波和毫米波设备、模块和高达或超过100GHz(W-band)的天线。 该系统利用Arralis公司的Corvus单片微波集成电路(MMIC)产品组合和一个获得专利的模拟波束形成技术,能够在300米距离探测快速接近的摩托
[汽车电子]
Arralis推远程3D<font color='red'>目标</font>探测<font color='red'>雷达</font> 可在300米范围的恶劣条件下探测物体
基于FPGA雷达目标模拟器DRFM设计与实现
摘 要: 研究了雷达多目标模拟系统中数字射频存储(DRFM)单元的设计与实现,根据模拟系统的设计要求, 提出一种基于高性能 FPGA数字射频存储单元设计方法;着重阐述了数字射频存储单元的设计思路, 给出了系统的设计方案, 并对系统中雷达模拟目标的各功能模块进行了分析,实验结果表明,所设计的DRFM满足设计系统要求。 关键词: 雷达;模拟器;数字射频存储(DRFM);FPGA DRFM技术是随着雷达欺骗干扰技术的提高而发展起来的,具有相参捕获及复制脉冲的能力。目前除了应用于雷达欺骗式干扰外还被广泛应用于内环境雷达目标仿真实验,为电子对抗、侦查、雷达探测、武器装备研制、性能实验和鉴定提供相应的电磁信号环境, 以便准确评估武
[嵌入式]
基于FPGA<font color='red'>雷达</font>多<font color='red'>目标</font><font color='red'>模拟器</font>DRFM设计与实现
阻尼振荡波模拟器的校准方法
阻尼振荡波发生器用于评估家用、商业和工业用途电气和电子设备的阻尼振荡波抗扰度提供一个理想、规范的依据。仪器可以模拟高压和中压变电站中的电力电缆、控制和信号电缆上的重复性阻尼振荡波。 阻尼振荡波发生器主要是由高压源、充电电阻、储能电容器、高压开关和波形网络组成。耦合去耦网络有耦合网络和去耦网络两部分构成,用于交、直流电源端口的验收试验。容性耦合夹由耦合夹及两端同轴接头构成,用于输入、输出和通讯端口上的连接线的验收试验。 在JJF2016-阻尼振荡波模拟器校准规范中,要求我们在校准电快速瞬变脉冲群发生器时,主要是校准阻尼振荡波主机、耦合去耦网络和容性耦合夹。 在对阻尼振荡波模拟器主机的校准中,阻尼振荡波模拟器主机应设置为同
[嵌入式]
阻尼振荡波<font color='red'>模拟器</font>的校准方法
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved