基于DSP控制的双PWM风电并网换流器的设计

发布者:ikfnpo最新更新时间:2013-03-29 来源: 电子技术关键字:DSP控制  双PWM 手机看文章 扫描二维码
随时随地手机看文章
   

摘要:为了解决风力发电的分散性和波动性以及接入电网对电力系统造成冲击等问题,提高整个系统的电压频率稳定性,文章以DSP作为主控制器,研究设计了一种基于双PWM控制的风电并网换流器。针对风力发电并网换流器的主电路,设计了整流和逆变部分的双PWM电路拓扑结构,从而提高了系统的动态响应,减少了损耗和冲击,实现了电能的双向传输,同时还能提高风力发电机侧功率因数。最后对设计的系统进行仿真验证。
关键词:主控制器;双PWM控制;并网换流器;拓补结构

0 引言
   
在能源危机愈演愈烈的今天,寻找绿色环保的新能源替代传统的化石燃料已成为人类共同的期待。风能作为绿色能源的的一种,它的开发和利用能够解决传统能源带来的诸多问题,是理想的替代能源。通过风电机组将风能转化为电能是一种非常有效的能源利用手段。随着数字信号处理芯片的诞生,很多先进的控制算法得以应用,大量出现在风力并网控制系统中。

1 主电路设计
   
并网控制器的结构如图1所示,控制核心由DSP芯片完成,通过驱动电路控制两个换流器的工作。过去一般采用二极管整流器件和晶闸管有源换流器,但由于运行中存在响应慢、电流谐波和损耗大以及不能实现四象限运行等缺点。本文对两个变流环节均采用基于全控型器件四象限运行的PWM换流器,不仅可以减少系统的冲击和损耗,还可以实现电能的双向传输,提高系统的动态响应和风力发电机网侧的功率因数,使输出电压电流波形为标准正弦。整个系统由输入滤波电感、智能功率模块(IPM)、直流滤波电容三部分组成。双PWM换流器整体硬件构成如图1所示。

k.JPG


    为了便于分析,将整个系统分成交流电网侧、网侧PWM逆变器、直流侧、转子侧PWM换流器和双馈发电机。双PWM换流器主电路拓扑结构如图2所示。

l.JPG


    功能描述:
    (1)双PWM换流器在结构和功能上都相对独立。
    (2)双PWM换流器的两端均可实现能量的双向流动,且两侧均可在整流/逆变状态之间进行转换。
    (3)双PWM型换流器具有较强的无功功率控制能力。
1.1 整流电路选型
   
由于采用双PWM调制,所以在发电机侧采用PWM电路(见图3)。由于此电路本身就具有BOOST升压功能,故无需额外的升压电路,就可以让发电机在很宽的风速范围内运行,而且允许功率双向流动,减少了系统对电网的谐波污染。

m.JPG


1.2 后级变换电路选型
   
后级变换电路采用SPWM电路(如图4),在输入直流电压的情况下,输出为标准的正弦波电压。

n.JPG


    由DSP控制器发出方波控制信号,使输出端产生基波为正弦波的方波电压,再经过滤波装置即可产生标准的正弦波电压输出(如图5)。

o.JPG


    网侧换流器的控制目标是:1)保持输出直流电压稳定并且有优良的动态响应能力。2)确保交流侧输入电流为正弦且功率因数为1。故输入电流的有效控制是网侧换流器控制的关键。从本质上讲,网侧换流器是一个涉及交、直流电能形态转换的能量变换系统。由于无穷大电网电压基本恒定,对输入电流实施快速有效的控制也就能有效地控制能量流动的速度和大小。
[page]

 

    2 控制及检测电路设计
    DSP控制电路是整个换流器控制系统的核心部分,而DSP芯片本身的高精度、高速度等工作特性决定了控制电路板在设计上必须保证一定的稳定性、可靠性。
2.1 电源及晶振电路设计
    DSP芯片对供电电源的要求很高,其根据工作频率的不同,要求的内核电压也有所区别。本系统采用TI公司专为DSP供电所设计的电压转换芯片TPS7333Q(如图6所示),芯片输入输出电压分别为5V和3.3V,该芯片输出稳定,并具有上电复位功能。

p.JPG


    本设计我们使用外部振荡器,也即在TMS320F2812的X1/XCLKIN和X2两引脚之间连接一个标称频率为30MHz的石英晶体。
2.2 信号检测电路设计
   
信号检测电路为系统提供准确的外部输入,是控制系统的重要组成部分。通过对各被控量的检测,将结果送入DSP。DSP恨据确定的算法对检测信号进行处理并给出相应的响应值,来实现系统整体控制策略。
2.2.1 电网电压相位过零点检测
   
系统的运行需要已知电网电压的相位过零点。图7为相位过零点检测电路,其输入为网侧A相电压。

a.JPG


2.2.2 直流母线电压检测
    由于经过电阻分压后采用线性光耦隔离采样直流母线电压,电路结构简单易行,响应速度快,可满足动态响应特性。因此,本系统选用此方法。直流母线电压检测电路如图8所示。

b.JPG


2.2.3 电流检测电路
   
由于霍尔元件具有精度高、线性好、频带宽、响应快、过载能力强和不损失被测电路能量等诸多优点,因而被本系统采用,图9是采用霍尔电流传感器的电流检测电路。

c.JPG


[page]

 

    3 仿真
3.1 仿真设计
   
本系统使用Matlab中的Simulink进行仿真。图9为三相PWM交-直-交变流系统设计原理结构图。系统输入端采用SPWM整流;中间环节采用电容滤波,输出直流电;然后经SPWM逆变并采用无源滤波器滤波,得到标准的三相交流电源。

d.JPG


    图10为系统仿真结构图。其中整流和逆变SPWM模块均采用Simulink工具箱中的通用桥模块,整流PWM模块采取内调制波生成,载波为1kHz三角波,输出电压频率设定为1kHz。逆变PWM模块也采取内调制波生成,载波频率设定为2kHz,输出电压频率设定为50Hz。前级调制幅值设定为0,后级调制比为0.9。负载采用0~50kW三相并联RLC。

e.JPG


3.2 仿真结果
   
图11~图15的波形是在空载时应用上述变流控制系统仿真后得到的仿真结果。
    图11所示是输入的电压电流波形,可以看到电压符合给定的要求,即三相正弦波电压,幅值为250V,频率为30Hz。

f.JPG


    图12所示是PWM整流器整流后经大电容器C滤波后得到的直流电压波形,直流电压大小为350V左右。当电容器电容值选取恰当时,输出直流电压跟踪输入交流电压变化速度非常快,波形几乎呈一条水平直线。在这里,电容大小的选择是个关键,经反复调整和仿真运行,根据输出电压波形选择电容器电容大小为1.7F。

g.JPG


    图13所示为换流器输出电压波形,从波形上看是非常理想的。

h.JPG


    图14所示是三相输出电压波形畸变率。换流器输出电压主要受其输入的直流电压幅值和波形影响,如果整流电压波形不平滑,振幅波动较大,则换流器的输出波形便不是矩形波。换流器波形越接近矩形波,则经过三相无源滤波器滤波后,换流器输出波形才越接近正弦波。

i.JPG


    图15所示是输出端的三相电压和三相电流波形。其中,相电压大小为220V,频率为50Hz,从波形上看是非常理想的。

j.JPG



4 总结
   
理论分析和实验结果表明:由于采用了整流和逆变部分的双PWM拓扑结构,大大提高了系统的动态响应,减少了损耗和系统冲击,实现了电能的双向传输,同时还能提高风力发电机侧功率因数。

关键字:DSP控制  双PWM 引用地址:基于DSP控制的双PWM风电并网换流器的设计

上一篇:CEVA推出MUST™多内核系统技术
下一篇:基于DSPIC的工业控制系统的设计

推荐阅读最新更新时间:2024-05-02 22:36

基于DSP单周控制有源电力滤波器的研究
各种非线性负载应用日益广泛,电网中的无功功率和谐波污染已经成为一个非常严重的问题。为了消除无功和谐波对电网造成的污染,有源滤波器(APF)得到了飞速发展。其采用的控制方法主要分为三角载波线性控制、滞环比较控制、无差拍控制3种类型。这些方法均存在一定的缺陷,如三角载波的波形畸变,滞环控制开关频率变化以及畸变电流检测的快速实时响应等。随着微机控制技术的不断发展以及数字信号处理器(DSP)运算速度的不断提高,无差拍控制法,单周控制法及其他快速优化控制法将在APF中得到进一步的应用。 单周控制法作为一种非线性控制法,最早由美国学者Keyue M.Smedley和Slobodan Cuk提出。其基本思想是:控制开关的占空比,使每
[嵌入式]
基于DSP的主动磁轴承数字控制器的设计与实现
    摘要: 介绍了基于DSP的径向四自由度磁轴承数字控制器的总体结构,A/D和D/A转换电路,PID控制算法和控制软件的结构,调试方法和实验结果。实验表明:设计的数字控制器硬件和软件系统,参数实调试方便,工作性能稳定可靠,满足了磁轴承控制性能要求。研究结果对开发数控磁轴承系统具有参考和应用价值。     关键词: 磁轴承 控制器 数字信号处理器(DSP)硬件 软件 主动磁悬浮轴承(简称磁轴承)系统主要由被悬浮物体(即转子)、位移传感器、控制器和功率放大器等组成。位移传感器检测转子偏移参考点(平衡位置)的位移量,控制器将检测到的位移变换成控制信号,功率放大器将控制信号转换成控制电流,控制电流在执行磁铁中产生
[嵌入式]
FUJITSU TEN采用ADI DSP实现声学控制
Analog Devices, Inc.(纽约证券交易所代码: ADI)最新宣布Fujitsu Ten公司的高级音频放大器采用ADI公司的浮点SHARC DSP架构,实现了革命性的汽车音响体验。这项被称为“声学空间控制技术”的创新技术由Fujitsu Ten公司研究并实现,不仅能大幅降低由汽车底盘的振动带来的影响,同时还可对驾驶室玻璃的声音反射效果及车内装潢所引起的声音吸收现象进行补偿。此外,声学空间控制技术增强并补偿了扬声器的声音局限性,如频率响应以及扬声器在驾驶室中的物理位置所带来的挑战,从而在空间上增强了音频体验。 凭借在汽车环境及声学研究方面累积的多年经验,Fujitsu Ten公司最终开发出声学空间控制技术
[嵌入式]
基于DSP和CAN总线的分布式电机控制系统
   引言   CAN(Controller Area Network)控制器局域网,主要用于各种设备监测及控制的局域网。最初由德国Bosch公司用于汽车的监控系统而设计,具有良好的功能特性和极高的可靠性,现场抗干扰能力极强, 总线形式为串行数据通信总线。   TI 的24X系列芯片,具有处理性能优良(30MIPS),外设集成度高,程序存储器容量大,A/D转换速度快等特点,是基于工业控制而设计的DSP(数字信号处理)类芯片。LF2407A以其丰富的集成外设,提供了电机数字化控制解决方案。其嵌入式CAN总线控制器,基于CAN2.0B规范要求,提供了CAN通信功能,可为实现分布式工业监控局域网络提供了一个解决方案。    CAN
[嵌入式]
DSP和FPGA构成的3/3相绕组感应发电机励磁控制系统
摘要:介绍了针对3/3相双绕组感应发电机设计的励磁系统,该系统由DSP和FPGA构成。给出了控制系统的接口电路和实验结果。 关键词:DSP FPGA 3/3相双绕组感应发电机 1 系统简介 3/3相双绕组感应发电机带有两个绕组:励磁补偿绕组和功率绕组,如图1所示。励磁补偿绕组上接一个电力电子变换装置,用来提供感应发电机需要的无功功率,使功率绕组上输出一个稳定的直流电压。 图1中各参数的含义如下: isa,isb,isc——补偿绕组中的励磁电流; usa,usb,usc——补偿绕组相电压; ipa,ipb,ipc——功率绕组电流; upa,upb,upc——功率绕组相电压; udc——二极管整流桥直流侧输
[应用]
一种基于DSP控制的液晶显示屏的设计及实现
近年来,随着低价格、高性能DSP芯片的出现,DSP已越来越多地被应用于高速信号采集、语音处理、图像分析处理等领域中,并且日益显示其巨大的优越性。而液晶显示屏更以其显示直观、便于操作的特点被用作各种便携式系统的显示前端。传统的液晶显示往往采用单片机控制。但在系统有大量高速实时数据的情况下,单片机由于受到处理速度的限制就显得力不从心。为了解决这些问题,本文提出了一种基于DSP控制的液晶显示屏的设计,有效地解决以上所遇到的问题。 1 SED1335控制器的介绍 AT-320240Q1型液晶显示屏是由台北晶采用电科技股份有限公司生产的一款内嵌SED1335控制器的液晶显示屏。它由320×240点阵构成,具有高分辨率(点型为0.225mm
[电源管理]
借助音频DSP平台 超低功耗非触摸手势控制有谱
为消费电子产品设计与开发混合信号半导体器件与音频解决方案的全球性领先供应商欧胜微电子有限公司(Wolfson Microelectronics plc),与一家为消费电子设备提供超声非触摸手势识别的领先供应商Elliptic Labs日前联合宣布:双方已就在欧胜领先于业界的音频数字信号处理器(ADSP)平台上利用Elliptic Labs的超声手势控制解决方案建立了合作伙伴关系。这项技术合作为诸如智能手机、平板电脑以及汽车信息娱乐设备等消费电子产品实现了“永远工作”的、基于超声波的低功耗非触摸手势控制。   在利用声波解析手部动作的领域内,Elliptic Labs的解决方案是目前唯一被集成到便携式设备中的、可提供3D手势控制的
[模拟电子]
借助音频<font color='red'>DSP</font>平台 超低功耗非触摸手势<font color='red'>控制</font>有谱
基于DSP的主动磁轴承数字控制器的设计与实现
    摘要: 介绍了基于DSP的径向四自由度磁轴承数字控制器的总体结构,A/D和D/A转换电路,PID控制算法和控制软件的结构,调试方法和实验结果。实验表明:设计的数字控制器硬件和软件系统,参数实调试方便,工作性能稳定可靠,满足了磁轴承控制性能要求。研究结果对开发数控磁轴承系统具有参考和应用价值。     关键词: 磁轴承 控制器 数字信号处理器(DSP)硬件 软件 主动磁悬浮轴承(简称磁轴承)系统主要由被悬浮物体(即转子)、位移传感器、控制器和功率放大器等组成。位移传感器检测转子偏移参考点(平衡位置)的位移量,控制器将检测到的位移变换成控制信号,功率放大器将控制信号转换成控制电流,控制电流在执行磁铁中产生
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved