基于多DSP 互联技术的频谱监测仪研究

发布者:PeacefulOasis最新更新时间:2014-02-28 来源: 21IC关键字:DSP  互联技术  频谱监测仪 手机看文章 扫描二维码
随时随地手机看文章

随着微波技术的广泛发展,空间和地面电磁环境越来越复杂,无线电频谱资源作为公共资源的一种,需要频谱管理部门进行有效的分配和监控。特别是在频带日益拥挤、自然和人为干扰日益增大的情况下,频谱监测系统有必要进行监测,检测存在的干扰,以便采取措施将影响降至最低,确保频谱资源得到合理的利用。

电磁频谱监测分析仪是应对当前电磁信号频谱检测挑战,兼备高分辨率和高搜索速度的检测设备。频率分辨率的提高意味着幅度检测灵敏度和频率分辨能力双提升、因此其高分辨率、高速扫描的特点意味着在电磁信号检测领域拥有强大的检测效率。本系统采取了基于FPGA,DDR2 内存卡和多DSP 的信号高速存储及处理,多模式多窗口信号检测,多域信号分析的技术路线,是一台性能很高、功能较为强大的电磁信号检测分析仪器,有着传统检测仪器无法比拟的优点和广泛用途。

1 系统硬件方案

频谱监测分析仪系统组成包括了超外差信号接收,强大的中频信号采集处理系统,以及内嵌计算机系统这三大主要部分。超外差信号接收包括射频通道、微波驱动、本振合成,信号经过三次变频,变频到采样中频,中频采集处理系统基于软件无线电设计思想,包括中频电路、数字中频及存储单元、多DSP并行信号处理。内嵌计算机操作系统为Windows XP,是整机软件的载体,并可配置外接设备。整机原理框图如图1所示。

 

 

2 系统软件设计

2.1 平台和开发环境

本系统拟采用测试仪器行业主流的Wintel架构搭建控制平台,主控制器采用高性能CoreDuo 双核处理器,选用Windows XP 作为软件运行平台,充分满足用户的使用习惯以及数据资源共享的需要;整机软件开发环境采用了VS2005 集成开发环境,并利用VisualSourceSafe进行团队化开发管理。

2.2 数据处理模块设计

数据处理模块主要是对信号进行采集,然后将数据送入计算机。数据处理模块的核心工作就是把所要采集的信号进行量化和采集。该模块的详细软件设计如图2所示。

 

 

2.3 用户接口和界面设计

本系统设计了扫描检测和多域分析(内含调制识别)两种主要的测量功能,对于每种测试功能,均可在操作界面固定位置激活参数测试向导,并通过下拉式菜单、快捷按钮、传统菜单和众多的对话框实现和用户的友好交互,用户可以定制参数测试方法后储存为参数测试解决方案,后续使用时可以直接调用该解决方案,实现一键化测试、测试参数报表方式灵活可选,以便更加贴近不同需求。

2.4 控制和数据传输接口设计

在本系统中,数据采集与传送速率高达几十兆字节/秒,要求整机具备USB、LAN、GPIB、并口、串口等各种通信协议,支持1 024×768的TFT显示及LVDS接口,支持可配置的打印方案,支持海量/移动存储设备,需要实现对数字中频模块、模拟电路模块、专用外设以及通用外设的控制,这其中有高速处理器件,海量存储器件,部分功能I/O中使用慢速或者串行器件,如果采用单一制式的总线进行接口设计显然是不合理的,这里采用的是PCI、USB、自定义仪器控制总线相结合的复合总线形式。

3 系统主要技术的实现

3.1 高速数据采集PCB设计技术

一个理论上完善的系统设计,在实现时很难达到理论设计的要求,这是因为实际存在的各种干扰都对电路有影响,而且还要处理好地线排布、电源去耦、信号传输线的反射等实际问题。下面是针对这些问题本项目采用的一些设计技巧:避免走线的直拐角,尽可能地用45°走线或弧线;尽可能少用过孔,因为每一个过孔都是一个阻抗不连续点;尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线。>电源线>信号线;信号间的串扰对相邻平行走线的长度和走线间距极其敏感,因此相邻走线层的信号线的总体走线方向一般要互相垂直,在同一走线层上尽量使高速信号线与其他平行信号线间距拉大,平行长度缩小;在优化布局的基础上,尽量缩短高速信号的长度,控制信号组延迟的一致性是布线时的重要任务;不用桩线,因为任何桩线都是噪声源,如果桩线短,可在传输线的末端端接就可以了,如果桩线长,会以主传输线为源,长生很大的反射,使问题复杂化。

3.2 多DSP互联技术

为了提高信号处理速度,采用多DSP处理器,采用的DSP型号为AD公司的ADSP-TS20IS.本系统采用3个高性能DSP高速处理,其中2个为信号处理DSP,1个为管理DSP.作为2个信号处理DSP,分时接收前端A/D的采样数据,然后进行数字并行滤波器组处理提取信号的频率信息、功率信息、带宽信息,2个DSP的处理结果送给管理DSP.管理DSP 是数据处理层和数据管理层之间的纽带,负责协同多DSP处理系统的工作,本系统采用的多DSP连接框图如图3所示。

 

3.3 能量检测技术

阈值设定和计算是进行信号能量检测的前提和关键,用户监测分析频率范围比较窄的情况下可以采用电平阈值方式,电平阈值作为单一电平设定和使用比较简单方便,但在频段较宽的情况下,电平阈值无法有效完成多个波段同时扫描的情况下较小电平信号的监测,为此设计了自动阈值算法(见图4),自动阈值由软件根据频谱数据自动计算背景噪声功率,并通过加一个偏移值,很好的把噪声和信号区分开。

 

 

4 系统功能的实现

本文设计的频谱监测分析仪各种功能都已经实现,几个功能实现界面如图5,图6所示,在频谱监测中发挥了重要作用。

 

 

 

 

5 结论

本文设计了一个频谱监测分析仪的总体方案,即由超外差信号接收,强大的中频信号采集处理系统以及内嵌计算机系统这三大主要部分组成。在设计总体方案的同时,给出了实现此总体方案的几个关键技术。实践证明,该频谱监测系统具有高分辨率、高速度搜索、高速存储及处理的特点,有良好的应用前景。

关键字:DSP  互联技术  频谱监测仪 引用地址:基于多DSP 互联技术的频谱监测仪研究

上一篇:S2C扩充Virtex-7快速原型验证产品系列
下一篇:DSP英雄迟暮 FPGA是未来的替代者?

推荐阅读最新更新时间:2024-05-02 22:59

CEVA连续三年参展IIC,携DSP核厚望中国消费电子市场
DSP核的领导厂商CEVA正在加强其在亚太地区的业务能力,在上海举行的IIC上,该公司表示,鉴于中国市场CEVA客户以及合作伙伴数量的不断增长,该公司已经在不久前于上海设立了其在中国大陆的第一个办事处,从而为更多的本土客户进行技术支持。 “在过去的两年当中,中国市场正在变得日益成熟。本土工程师的技术能力也在迅速提高。另外,越来越多的管理人员正在从硅谷源源不断的涌入中国。”最新上任的CEVA公司亚太区副总裁Gweltaz Toquet在日前举行的IIC上海站上表示,“如果说两年前我们还不能确定上述事实的话,那么现在无疑是说‘是’的时候了。” “CEVA参加IIC的历史可以上溯到2004年。我们每一年的参展规模都比之前扩大一些,”
[焦点新闻]
使用TI 的低功耗C5x DSP的指纹识别方框图和解决方案
方案框图 设计说明 指纹识别用于各种应用,包括电子门禁系统、智能卡、车辆点火开关控制系统、带指纹控制存取功能的 USB 记忆棒及许多其它应用。指纹扫描仪中的数字信号处理元件可执行滤波、转换、特征提取、匹配运算及其它算法等复杂的 DSP 功能。 指纹传感器可以运用电容、光学、压力或热感技术来获取手指特征的图像。最常用的指纹传感器解决方案首先使用激光或 LED 灯照亮指纹,然后使用 CCD 或价格较为低廉的 CMOS 传感器进行图像采集。指纹传感器通常为自包含模块,其包括可将模拟信息转换成数字化数据流的模数转换器。分辨率、动态范围和像素密度均是决定图像质量并影响传感器精确度的因素。 一旦采集到图像,数字信息将被传输到数字信号处
[嵌入式]
使用TI 的低功耗C5x <font color='red'>DSP</font>的指纹识别方框图和解决方案
DSP芯片与触摸屏的接口控制
以DSP(数字信号处理)芯征和FPGA(现场可编程逻辑门阵列)为核心的无线数字扩频通信平台是无线扩频通信的一个开放式平台,可用于无线接入、无线图像和音频传送、移动INTERNET、精确区域定位LPS、智能遥控探测等高科技领域。 我们在此基础上增加了液晶显示和触摸控制,从而实现文字和图形信息的编辑和无线传送,使该产品用途更加广泛。 ADS7843是专用于4线电阻式触摸屏的12位模/数采样转换器,具有单一电源供电、完全降功耗模式、转换速度快的特点。ADS7843大量用在电池供电PDA(Personal Digital Assistants)和手持便携式装置中。 1 液晶触摸屏控制产品设计简介 液晶采用Microtips Technol
[嵌入式]
基于TMS320C6678 的多核DSP 上电加载技术
在视频检测、医疗影像及红外图像快速跟瞄系统应用中,越来越复杂的二维、三维甚至四维的图像处理,需要并行化的处理系统,并能够运行复杂的算法。要实现这些复杂的系统,高端FPGA+高性能DSP是目前普遍采用的方案,而单个DSP的性能已发展至极限,所以解决复杂的并行算法,多核DSP是现在发展的全新方向,其中多核DSP的根加载技术是其难点之一。 TI公司推出的DSP芯片TMS320C6678(C6678)具有8个内核的高性能DSP,每个内核工作频率均达1 GHz. 其支持的Boot 模式有SPI、I2C、EMAC、SRIO 和并口Emif16 NOR-FLASH.其中Emif16 NOR-FLASH模式是不用上位机参与、比较简单、独立成系统的
[电源管理]
基于TMS320C6678 的多核<font color='red'>DSP</font> 上电加载<font color='red'>技术</font>
2007年度TI DSP大奖赛竞赛须知
  参加2007年TI DSP 大奖赛必须具备下列条件:   参赛资格:凡在校大学生、研究生均可组队参加,每个队由1-5名队员和1名指导教师组成。鼓励学生自发组队、命题、报名参赛   填写报名表格:所有申请报名的参赛队伍,必须填写大奖赛参赛申请表格(报名表),同意所有的参赛条件(请访问TI中文网站中国大学计划2007 TI DSP大奖赛网页下载参赛申请表格)。所有  递交的参赛申请,都应该确认每位参赛队员在项目设计中作出了具体的贡献。所有参赛队员都必须阅读和同意遵守本次的竞赛规则。   基于TI DSP的原创性设计:所有参赛队必须提交一份使用TI DSP处理器的硬件或软件系统。鼓励参赛者体验TI的模拟产品及MCU的广泛功能和持续
[嵌入式]
基于DSP的数字音频均衡器设计
摘要 音频均衡器在音频系统中是调节音色的重要工具之一。文中提出了一种基于ADSP—BF533硬件平台的数字音频均衡器设计,其音频处理算法包括谱分析和均衡算法。经过测试表明,该系统可达到理想的音频均衡效果,用户可对各种音效进行选择和自定义音效。 关键词 音频均衡器;谱分析;ADSP—BF533 均衡器是一种可以分别凋节各种频率成分电信号放大龟的电子设备,通过调节音频均衡器的参数,可以补偿扬声器和声场的缺陷,起到补偿和修饰各种声源的作用。 分立器件与运放构建的模拟电感音频均衡器,因受分立器件本身性能的影响,存在许多不利因素,使该音频均衡器在竞争中处于劣势。提出了在ADSP—BF533硬件系统上设计数字音频均衡器的方法。谱分
[嵌入式]
基于<font color='red'>DSP</font>的数字音频均衡器设计
采用高性能SRAM提高DSP密集型应用的性能
  军事与国防应用极大地受益于数字信号处理器( DSP ),其广泛应用于雷达、软件无线电( SDR )、灵巧弹药与目标探测系统、电子战应用、飞机成像以及众多其它应用。 DSP 借助其完美架构提供的精确处理能力可以显著提高性能。关键 DSP 功能包括实时信号处理、超高吞吐量与可重编程功能。本文介绍了如何采用高性能四倍数据速率(QDR)SRAM而使整体DSP系统性能至少提高两倍(与使用 SDR AM的传统方法相比)的方法。   数字信号处理   数字信号处理包含把信号转换成数字形式后对其进行处理的方法,如:雷达处理。雷达系统基本上是产生可以通过定向天线馈送的脉冲。这些信号以光速传播,而其路径中的任何物体都会把
[嵌入式]
采用高性能SRAM提高<font color='red'>DSP</font>密集型应用的性能
CEVA借SensPro Sensor Hub DSP协助客户有效实现传感器融合
众所周知,传感器在配合使用时效果最佳。对于同步定位与地图构建 (SLAM) 来说更是如此。SLAM 在 AR/VR 领域扮演着重要的角色,可以根据用户的姿势调整场景,避免无人机或机器人这样的应用在使用过程中的碰撞,用途广泛。SLAM市场预计到2023年将增长至4.65亿美元,年复合增长率为36%,为大多数开发者提供了绝佳机遇。在手机上将 SLAM 应用于室内导航可能会在规模庞大的基础平台市场中占据主导地位。GPS 不能在室内工作,基于信标的导航只能在具有信标基础设施的区域工作。而 SLAM 则可以在任何提供室内地图的地方工作,符合大多数楼宇自控管理系统的低成本期望。将该区域的场景与用户在该区域行走时的姿势和运动融合到了一起,使得在
[手机便携]
CEVA借SensPro Sensor Hub <font color='red'>DSP</font>协助客户有效实现传感器融合
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved