技术人员在FPGA设计时需注意的方方面面

发布者:huanxin最新更新时间:2009-02-04 来源: 电子系统设计关键字:FPGA  设备配置  功率管理 手机看文章 扫描二维码
随时随地手机看文章

     不管你是一名逻辑设计师、硬件工程师或系统工程师,甚或拥有所有这些头衔,只要你在任何一种高速和多协议的复杂系统中使用了FPGA,你就很可能需要努力解决好器件配置、电源管理、IP集成、信号完整性和其他的一些关键设计问题。不过,你不必独自面对这些挑战,因为在当前业内领先的FPGA公司里工作的应用工程师每天都会面对这些问题,而且他们已经提出了一些将令你的设计工作变得更轻松的设计指导原则和解决方案。

I/O信号分配
     可提供最多的多功能引脚、I/O标准、端接方案和差分对的FPGA在信号分配方面也具有最复杂的设计指导原则。尽管Altera的FPGA器件没有设计指导原则(因为它实现起来比较容易),但赛灵思的FPGA设计指导原则却很复杂。但不管是哪一种情况,在为I/O引脚分配信号时,都有一些需要牢记的共同步骤:

1. 使用一个电子数据表列出所有计划的信号分配,以及它们的重要属性,例如I/O标准、电压、需要的端接方法和相关的时钟。
2. 检查制造商的块/区域兼容性准则。
3. 考虑使用第二个电子数据表制订FPGA的布局,以确定哪些管脚是通用的、哪些是专用的、哪些支持差分信号对和全局及局部时钟、哪些需要参考电压。
4. 利用以上两个电子数据表的信息和区域兼容性准则,先分配受限制程度最大的信号到引脚上,最后分配受限制最小的。例如,你可能需要先分配串行总线和时钟信号,因为它们通常只分配到一些特定引脚。
5. 按照受限制程度重新分配信号总线。在这个阶段,可能需要仔细权衡同时开关输出(SSO)和不兼容I/O标准等设计问题,尤其是当你具有很多个高速输出或使用了好几个不同的I/O标准时。如果你的设计需要局部/区域时钟,你将可能需要使用高速总线附近的管脚,最好提前记住这个要求,以免最后无法为其安排最合适的引脚。如果某个特定块所选择的I/O标准需要参考电压信号,记住先不要分配这些引脚。差分信号的分配始终要先于单端信号。如果某个FPGA提供了片内端接,那么它也可能适用于其他兼容性规则。
6. 在合适的地方分配剩余的信号。

      在这个阶段,考虑写一个只包含端口分配的HDL文件。然后通过使用供应商提供的工具或使用一个文本编辑器手动创建一个限制文件,为I/O标准和SSO等增加必要的支持信息。准备好这些基本文件后,你可以运行布局布线工具来确认是否忽视了一些准则或者做了一个错误的分配。
这将使你在设计的初始阶段就和布局工程师一起工作,共同规划PCB的走线、冗余规划、散热问题和信号完整性。FPGA工具可能可以在这些方面提供帮助,并协助你解决这些问题,因此你必须确保了解你的工具包的功能。

      你咨询一位布局专家的时间越晚,你就越有可能需要去处理一些复杂的问题和设计反复,而这些可能可以通过一些前期分析加以避免。一旦你实现了满意的信号分配,你就要用限制文件锁定它们。

信号完整性
     大多数先进FPGA能够处理速度为数百兆赫兹的并行总线和具有工作在千兆赫兹范围的串行接口。以这么快的速度工作时,你需要了解信号完整性的原理,因为高频信号的处理会给我们精确简单的数字世界带来一连串模拟设计问题。

     安排一些时间阅读FPGA供应商提供的文献。即使你对某个器件或者供应商的信息已经烂熟于心,也有必要参考其他供应商提供的文档,因为不同公司的文档往往有不同的见解。你将会发现在很多问题上不同的供应商拥有不同的观点,如什么会产生高速信号、切换信号之间可以存在多少时延而仍然可以认为它们是同时的等等。FPGA供应商的工具通常可以很好地执行一些基本的信号完整性分析,因此你必须完全了解你所获得的工具包的所有潜能。

      此外,目前市场上有几百种关于信号完整性和降噪的书。如果你是个新手或者需要一个进修课程,你可以考虑阅读Douglas Brooks编写的“信号完整性问题和PCB设计”。如果需要进行更深入的探讨,可以阅读Howard Johnson编写的“高速数字设计”。

 

[page]

 

      FPGA可能会由于太多的高速SSO而对系统中的信号(或其它FPGA信号)带来严重破坏,因为这会导致称为同时切换噪声(SSN)的噪声。SSN也叫做地反弹或VCC反弹,对于单端标准,SSN是在输出由低到高时提供瞬态电流和由高到低时吸收瞬态电流的过程中,由多个输出驱动器同时切换和导致器件电压与系统电压之间的变化而引起的。

      在高到低的转换引起地反弹时,由低到高转换也会导致VCC下降。由于电容通常安放在VCC和接地层之间,因此SSN典型地存在于这两个地方。由低到高转变时地反弹也有可能出现。于是,SSO变成了干扰信号,它会产生可能耦合到邻近信号的噪声。对于某个区域而言太多SSO可能会导致电源的扰动。由于以下2个原因,SSO已经变成一个必须认真对待的问题:

1. 切换时间大幅下降;

2. 过孔尺寸和走线宽度的减小加上更大的板厚度已经推高了板极电感,这将大幅增加出现地反弹的可能性。更大的负载电容也可能导致SSN,虽然程度上会轻一点。当有效VCC低于期望值,从而导致I/O缓存的转换速度低于期望速度时,SSN也可能导致时序问题变得突出起来。

      有几个方法可以减小SSN。有些器件只需通过限制I/O标准的选择就可简化这个问题,但不是所有器件都能这么做。一些供应商建议将高速总线输出分布到整个裸片上,如果SSN是你唯一关注的问题,那么这绝对是一个很好的建议。不过,如果按照这个建议去做,有2个基本问题将会冒出来。
首先,这可能会带来下游布通性问题,因为将信号散布到整个裸片上经常会引起更多的走线交叉。而这就导致需要更多的信号布线层。其次,大多数设计在散布信号前也要求进行仔细研究,因为当一个总线散布到特定的块或区外时会引起块/区间的兼容性问题。因此,如果你能在考虑布通性的同时,小心地将一个较小的总线分布到一个或两个块/区域内,那么系统将会工作得很好。

      如果你被一个具有相邻高速切换输出的设计所困扰,有好几种技术能帮助你解决潜在的SSN问题。首先对你的设计进行合适的布局和去耦合。对于去耦合,使用距离尽可能近的电源和地平面对,中间用一个SMT电容隔开。使用SMT电容进行去耦合也有助于减小电感,而电感是产生系统噪声的一个主要因素。

      如果你仍然觉得需要使用去耦电容(为了减小SSN),应该使得这些电容的位置尽可能靠近高速输出引脚。Altera的一项研究发现,如果这些电容到引脚的距离大于1英寸,在使用适当的SMT电容去退耦时,这些电容变得效率极低。其他减小SSN或者其可能产生影响的建议包括:避免将敏感信号(复位、时钟和使能等)位于SSO附近;可能时,使用较小偏移的输出和使用最低电感的过孔;通过在合适位置插入延时使得输出信号交替出现。即使已经完成了PCB的生产,这个建议仍然可以应用。
参考将被连接到FPGA上的器件的相关资料。对于每个器件,确定最大输入低电压门限(单位毫伏)。这是FPGA驱动该器件需要的最大电压,所以该设备仍然可以检测到一个有效逻辑低状态(最大VIL值)。同样,还要确定器件可以容忍且能继续工作的最大输入负脉冲信号(单位毫伏)。

      在某些情况下,最大容许的地反弹可能不是或者不仅是以上给出的值。而是要通过获得最大输入低电压门限的最小值、最大输入负脉冲信号、或者所有器件的最大地反弹来确定最大的系统地反弹。
然后,根据具有相似负载特点的网络连接的数目和种类对类似的FPGA总线进行分组。接着研究每个部分、区域或者块的电源和接地引脚数目,还有对于所使用的每个I/O标准,每个电源和接地管脚对所允许的SSO数目。这些数目可以用于计算每个组的总电容负载和每个输出驱动的电容,以确定可以容忍的SSO最大值。

      你也应该咨询供应商以确定基于每个块和每一对块你是否超过了推荐的SSO数目,前提是供应商已经研究了这些问题。同时,因为有多个因素会导致SSN,所以最好建立一个具有内置抗噪声性能的鲁棒系统。否则,就使用针对每个引脚限制I/O标准的器件,这样就可以减少可能的SSN问题。
差分信号在FPGA设计中,你可能会发现对差分信号的处理存在最多的争议。类似于SSN,最好从供应商、书籍和用户群获得尽可能多的信息。同时,在确定某个方案前咨询你的布局部门以了解他们推荐的建议和信息。主要争论开始于差分信号对是否应该采用宽边耦合还是边缘耦合,以及每对之间到底应该存在多少耦合。答案通常是“根据具体情况确定”,所以需要进行具体研究。

关键字:FPGA  设备配置  功率管理 引用地址:技术人员在FPGA设计时需注意的方方面面

上一篇:基于FPGA的数字下变频电路的设计与实现
下一篇:三星电子为赛灵思生产45纳米可编程半导体

推荐阅读最新更新时间:2024-05-02 20:45

Actel增强Fusion混合信号FPGA IP产品系列
爱特公司(Actel Corporation)宣布推出与其子公司Pigeon Point Systems携手开发的硬件平台管理应用的IP内核增强组件。全新的增强内核使Actel Fusion®混合信号FPGA更适合用于平台管理应用,尤其是获Pigeon Point市场主导的板级管理参考设计 (Board Management Reference, BMR) 系列支持的xTCA™应用。 Pigeon Point Systems总裁Mark Overgaard称:“这些DirectCore增强组件进一步表明了将Fusion混合信号FPGA用于本地xTCA管理控制器的优势,并展示了爱特公司和Pigeon Point Sys
[嵌入式]
美高森美PolarFire FPGA器件荣获
致力于在功耗、安全、可靠性和性能方面提供差异化的领先半导体技术方案供应商美高森美公司(Microsemi Corporation,纽约纳斯达克交易所代号: MSCC )宣布其成本优化最低功耗中等规模 PolarFire® 可编程逻辑器件(FPGA)产品荣获《今日电子》(EPC) 杂志和21ic.com 网站的 “2017年度产品奖”。 《今日电子》和21ic的编辑团队从全年收悉的100多个产品发布中筛选出20个最佳产品。获奖产品因其出色表现而获得表彰,特别是技术和特性、可用性以及该产品如何满足市场上相关应用的需求和要求。 美高森美产品营销副总裁Shakeel Peera 表示:“我们很高兴获得《今日电子》颁发的“20
[嵌入式]
美高森美PolarFire <font color='red'>FPGA</font>器件荣获
精确综合:下一代FPGA综合平台
概述 电子系统设计正在发生着重要的转变。可编程逻辑器件使设计者可以开发具有千万门以上、频率超过300MHz以及嵌入式处理器的电路,能够集成完整的系统。这一技术进步通过提供ASIC领域之外的全面的方法,正在引起设计过程的转变。 在迅速变化的可编程逻辑领域,EDA提供商面临的挑战是,如何提供与硅容量和复杂性同步的设计工具和方法。例如,ASIC领域用了15年来合并硅处理和基于可靠的功能性EDA软件的设计方法。这种ASIC技术曾经是工业领域的驱动力和发展方向。可以说ASIC处理造就了电子工业廉价的方案,导致了电子工业的进步和创新。但目前这个过程已经趋于成熟,它更适合于极高端的设计,慢慢地脱离了大众化的市场。 过去的实践已经表明,当电子设计
[嵌入式]
第三方软件快速实现FPGA嵌入式系统设计
FPGA问世已经超过20年,现在FPGA在复杂逻辑电路以及数字信号处理领域中扮演着越来越重要的角色,SoC以其低功耗、高性能、低成本、高可靠性等优点成为嵌入式系统的发展趋势。不过,对于很多设计者来讲这还是“新鲜事物”。学习并掌握一项新的技术或具备某种能力,比如学习FPGA开发技术并将其应用到实际系统中,这是一项艰巨任务。Altium Designer 提供了一种简单轻松的方法,可以帮助软/硬件工程师共同应对FPGA嵌入式系统开发的挑战。Altium designer拥有强大的嵌入式系统设计功能以及非常便捷的设计流程,它在FPGA 及嵌入式智能方面有如下优势: 1) 完整功能、统一的设计环境   a) 简单易
[嵌入式]
第三方软件快速实现<font color='red'>FPGA</font>嵌入式系统设计
莱迪思将展示专为移动应用创新而设计的FPGA
    莱迪思半导体公司近日宣布将于1月8日至11日在拉斯维加斯举办的消费电子展(CES)上召开一个见面会,届时将展示一些新的基于FPGA的设计解决方案,适用于消费电子和移动设备。莱迪思展示厅位于拉斯维加斯酒店东楼2980号套房。若您希望预约一个时间来参观莱迪思展厅,并探讨移动创新可以如何帮助您解决具体的设计难题,请点击莱迪思移动应用创新进行注册。 Lattice的iCE40™和MachXO2™ FPGA因其小尺寸、低功耗和低成本等优点,广泛用于移动设备和消费类电子产品,如智能手机、平板电脑、电子阅读器、数码相机和平板电视等。可编程FPGA是一种理想的设计方案,适用于迅速变化的消费电子市场,这些器件使制造商能够快速、轻松地在其
[嵌入式]
车载AI芯片之争,架构&参数
自动驾驶时代,AI 芯片 异军突起。 车载AI芯片作为自动驾驶汽车的“大脑”,承担着最艰巨复杂的任务。然而目前车载芯片市场玩家众多,芯片架构也纷繁复杂。从传统汽车到自动驾驶,车载芯片发什了什么变化?本文将带你了解车载AI芯片的发展趋势与参数分析。 车载芯片发展趋势 早期,汽车通常以分布式ECU架构为主,每个模块都拥有单独的ECU(电子控制单元)。随着汽车电子的发展,越来越多的复杂功能被集成到汽车上,区域中心化架构与整车中心化架构的比例逐年提高。目前,整车中心化架构已经成为智能车的主流架构与发展趋势,对域控制芯片的要求也在提升。 汽车架构对比 图源:国信证券 在智能驾驶汽车普及之前,传统汽车通常采用MCU作为
[汽车电子]
车载AI芯片之争,架构&参数
基于单片机设计的舞台吊杆控制器
在舞台机械设备中,吊杆起着重要的伤脑筋。在大型的影剧院,一场演出往往需要调动大量的舞台背景,有时要控制多达64路的吊杆同时动作。操作人员要在现场不断变换舞台背景,控制室人员要不断地和现场人员进行协调,这给舞台控制带来了很大不便。对吊杆的集中控制、实时响应来自多路的请求及吊杆位置的精确定位是设计中要解决的三个关键问题。目前的舞台控制系统大都通过采用光电编码盘产生脉冲信号的方式来获取吊杆的移动距离,并直接用单片机进行计数和控制。这种方法在响应多路请求时,往往会因为单片机任务繁重而造成计数脉冲丢失,引起测量误差。综上所述,本文提出了用CYGNAL单片机和FPGA设计舞台吊杆控制器的方法。 1 舞台吊杆控制系统的组成及工作原理 舞台吊
[单片机]
基于单片机设计的舞台吊杆控制器
FPGA助力高速未来
超级高铁技术是一种十分新潮的交通概念,它有望以其高速、低压系统重新定义移动出行的未来。 超级高铁的核心是在密封管网络中,乘客舱在磁悬浮和电力推进下,以超高速度行驶。 确保如此复杂系统的无缝运行和安全性需要先进的控制和监控功能,而这正是FPGA的用武之地。 FPGA提供无与伦比的灵活性、安全性和高性能,可处理各类复杂任务,包括管理超级高铁网络中的推进、导航和通信等。凭借自身的可重新编程性、行业领先的安全功能和实时数据处理能力,FPGA在优化超级高铁运输系统的效率和可靠性方面发挥着关键作用,为更快、更安全、更可持续的旅行方式铺平了道路。 Swissloop原型车亮相2023年苏黎世公开活动 Swissloop是一个由苏
[嵌入式]
<font color='red'>FPGA</font>助力高速未来
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved