基于FPGA的高速数据中继器设计的研究

发布者:sclibin最新更新时间:2009-02-27 来源: 中电网关键字:以太网  FPGA  中继器设计 手机看文章 扫描二维码
随时随地手机看文章

       1 前言

       高速以太网可以满足新的容量需求,解决了低带宽接入、高带宽传输的瓶颈问题,扩大了应用范围,并与以前的所有以太网兼容。全双工的以太网协议并无传输距离的限制,只是在实际应用中,物理层技术限制了最大的传输距离。不过可以通过使用高性能的收发器或链路扩展器来延长以太网链路的长度。但是面向流量高达数十G的高速以太网中,如何快速、可靠地实现数据的转发与链路延伸并不是一件很容易的事情。尤其是高速以太网中,对设备时延非常敏感,因此要求数据中继设备处理速度有足够的快、同时还能够对转发的数据进行简单分析与处理,才能实现高速、可靠的数据转发功能。另一方面,在10G以太网标准出台之前,就已经有多家厂商推出了基于10G以太网标准草案的10G以太网设备。国外厂商如Foundry、Cisco、Enterasys、Extreme、Forcel0、Nortel、A1catel、Juniper、Avaya、HP、Riverstone等公司纷纷推出了10G以太网设备,国内几家著名的通信设备制造商,像华为、港湾也研发出具有自主知识产权的10G以太网产品。不同公司的产品、设备在对协议实现的一致性、互操作性、稳定性、成熟性等方面都有所不同,因此要设计并实现一个可靠、高速数据中继器必须深入研究高速以太网标准,并充分考虑其设计的灵活性,因此本文提出了一个基于FPGA的高速数据中继器设计方案。

       2 高速数据中继器功能分析

       高速数据中继器主要需完成以下功能是对外部光纤链路发送过来的高速、大量数据处理,主要包括有: 10G以太网的物理层处理。包括将10Gbps光信号转换为电信号和将10Gbps高速串行数据转换为低速率的并行数据,便于上层处理;10G以太网的链路层处理。包括对10Gbps数据进行PCS解码和MAC控制的链路层处理,最后输出完整的MAC帧;对MAC帧格式进行判断来识别其中封装的上层数据是协议报文还是数据报文;对IP数据报文进行查表处理,看是否有发往本机的IP报文;将需要上交到转发进行深层次IP层处理的数据报文封装成内部数据报文格式并上交;将需要上交到板极处理机的协议报文和发往本路由器的IP报文封装成内部协议报文格式并上交。

      数据中继器对需要转发出去的数据需要完成如下处理:对交换发送过来的数据报文进行内部格式判断,决定是否进行查表处理;对不需要进行查表的IP报文直接从内部头中提取目的MAC地址;对需要查表的IP报文进行查表处理,若查表命中则返回目的MAC地址,若不命中则将该数据报文上交到板极处理机;对得到目的MAC地址的报文进行以太网格式封装;对板极处理机下发的协议报文和封装好的以太网帧进行合路处理;10G以太网的链路层处理。包括对MAC帧进行MAC控制链路层处理和PCS编码;10G以太网的物理层处理。包括并/串转换和电/光转换。其处理流程如图一所示



                           图 一:高速数据中继器数据处理流程

       3 方案的选取与实现

       从以上输入处理和输出处理流程来看,物理层和链路层的功能可以通过选择相应的商用器件来实现,实现起来并不复杂;但图1中虚线框内的处理功能是在10Gbps的高速率下进行的,实现起来比较困难。目前在高速数据处理中,能完成这部分功能的处理器件可分为固定功能器件和可编程器件两种,其中固定功能器件主要指ASIC(Application Specific Integrated Circuit),可编程器件又有FPGA(Field Programmable Gate Array)和NP(Network Processor)两种,下面对这三种器件进行比较。

      首先能够同时提供极高转发性能和较低成本的只有ASIC芯片了。ASIC的硬件资源最为丰富,处理能力是NP不能比拟,万兆核心层设备采用ASIC是对于性能的一种保障。但是它的先天不足也是无法回避的,由于ASIC的固定特性一直无法解决路由器对多业务支持的需求,ASIC芯片一旦产出后,其原有的功能无法添加,也可以把业内目前需要的功能都做在ASIC里面,但是现在主流的很多技术如MPLS、QoS等都是只停留在草案阶段,还未标准化,所以现在就做死在ASIC里面显然是有很大风险的。由此可看出,ASIC可为任何固定功能提供高性能,但却几乎没有灵活性和可扩展性。第二种NP,目前网络处理器(NP)技术是业内非常受欢迎的技术之一,NP技术本身就是通过厂家自己编写微码的方式对网络协议处理进行优化,通过内置微引擎的方式实现加速处理,性能是CPU无法比拟的。这样的结构注定了NP就比ASIC拥有更多的灵活性,对新增业务的支持能力永远都比ASIC强。但是NP也有其自身不能克服的缺点,NP的硬件资源对比ASIC肯定还是有很大差距的,所以其在处理海量多业务时转发性能下降很快,不能达到线速。

      第三种是FPGA,FPGA对任何高速并行数据处理都非常理想,具有可编程的能力和较高的灵活性,便于实现多业务支持,同时,由于其可编程性是通过硬件实现的,因此可以提供较高的高速数据处理性能。考虑到硬件的可编程性没有软件灵活,所以最新的FPGA上可以加上一个微处理器的核心(core),加上了微处理器核心的FPGA,在可编程性上变得“软硬兼备”。 除了加上微处理器的核心,FPGA芯片公司还花大力开发芯片的高速I/O,通过网络友好的功能,该类型FPGA可提供高性能数据和网络控制处理功能。这使他们成为WAN/MAN/LAN网络中专用高速数据处理的理想候选器件,并将在灵活性/性能间进行折衷的控制权交到用户手中。此外,FPGA对任何高速数据的并行处理都比较理想,而且具有非常的灵活性和扩展性,且开发周期短,能够形成具有自主知识产权的内核,最终还可以形成自己的ASIC,因此在本文设计中选择了FPGA作为高速数据处理的核心部件。

      根据高速数据中继器的功能需求,并考虑高速数据中继与转发中路由器的实际性能指标,确定了该高速数据中继器需要达到以下技术指标:具有10Gbit/s线速度处理40字节长IP包的能力;支持100MSPS的查表速度;可提供64K条本机地址表项。

      从上述三点性能指标来看,第一点通过选择性能指标高的FPGA即可实现,而第二点和第三点则无法由FPGA单独完成。从这两点性能指标来看,都是关于路由查表方面的,一个是表项容量方面的指标,一个是查表速度方面的指标。目前流行的查表方案是采用CAM(Content Addressable Memory)来实现,因此本文总体设计中也采用CAM来实现查表处理。由此得出的高速数据中继器总体设计结构如图二所示。



                 图 二:基于FPGA的数据中继器设计结构

      在该设计结构中,输入处理和输出处理使用FPGA来实现,由于这些处理功能都是在10Gbps的高速下完成的,占用的FPGA资源较多,加之输入输出处理时都有查表模块,占用的FPGA I/O资源也较多,要在一片FPGA内完成这些处理功能是很困难的。为降低设计难度和为以后功能扩展预留一些FPGA资源,对输入处理采用一片FPGA来完成,对输出处理同样采用一片FPGA来完成。对于其他功能部分,控制管理平面(板极处理机)采用Power PC来实现,输入查表和输出查表使用CAM来实现。在10G以太网链路层处理上选用商用ASIC芯片S19205来实现,S19205可以兼容IEEE802.3ae标准,能工作在10G-LAN、10G-WAN和10G-POS(Packet Over SDH)三种模式;在10G以太网的PMA和PMD子层的功能实现上选用了Gtran公司的GT10来实现,它是一个Transponder,在内部即实现了光电转换,又实现了串并转换,通过提供不同的时钟网络配合S19205就可以实现这三种10G接入方式。对于10G-LAN接入和10G-WAN接入而言,FPGA程序的处理流程是相同的,这样,S19205在GT10的配合下,可以将10G-LAN和10G-WAN的差别屏蔽在FPGA功能处理之外,使得该设计结构既可工作在10G-LAN模式,也可工作在10G-WAN模式,达到设计复用的目的。

      4 测试与分析

      高速数据中继器设计制板完成后,还要将其置于整个路由器环境中进行性能测试,其测试结构如图三所示,最下面四个模块组成了高速数据中继器。



                             图 三:测试结构图

     从图中可以看出,测试时需要两个10GbE接口,一个用于接收测试仪的数据报文,另外一个则是对经过转发处理和端口交换后的数据报进行处理后返回给测试仪进行分析。下面给出衡量系统性能的关键参数的测试情况。

      测试中选用的数据包长是46、60、64、65、128、256、512、1024、1280、1508,测试时间是1分钟,测试结果如下:



              图 四:系统时延测试曲线图

      由于我们的中继器设计时的性能指标是可以达到10Gbps速率下40字节IP包的处理能力,在测试仪的吞吐量下不应该丢包,实际测试结构在上述10种包长的情况下,IPv4和IPv6的单播、组播包的丢包率均为0。系统时延测试结果如图四所示。从测试结果可以看出,高速数据中继器应用在高速路由器中后完全满足高速路由器对数据中继要求的各项性能指标。

      5  创新点总结

     本文的创新点是提出了一种基于FPGA的高速数据中继器设计方案,并综合分析了ASIC和NP等方法设计的高速网络中继器设计方法,在设计的功能和灵活性两方面做了很好的权衡。从测试结果可以看出,本文设计很好地满足了网络处理的基本功能以及高速数据中继的性能指标要求。

参考文献:
1 Yalou Wang , W.A. Crossland , and R.W. Scarr,” Modelling for Optically Interconnected Packet Switches”[J],Proc,SPIE 4213(2000)44-55.
2 M. Izal and J. Aracil, “On the influence of self-similarity in optical burst switching traffic,” in Proceedings of GLOBECOM 2002[J], Taipei, Taiwan ,2002.
3 韩俊刚,“论ASIC与FPGA之争”[J],计算机工程,2004.4
4 王彦芳,王小平等.高速串行通信接口电路的CPLD实现[J],微计算机信息,2006, 5-1:p197-199




关键字:以太网  FPGA  中继器设计 引用地址:基于FPGA的高速数据中继器设计的研究

上一篇:首款用于高清晰视频处理的软件可编程核心处理器
下一篇:基于SOPC软件无线电资源共享自适应结构

推荐阅读最新更新时间:2024-05-02 20:46

详解恶劣工业环境下时限通信的可靠以太网物理层解决方案
工业应用为什么要采用以太网? 越来越多的工业系统采用以太网连接来解决制造商面临的工业 4.0 和智能工厂通信关键挑战,包括数据集成、同步、终端连接和系统互操作性挑战。以太网互联工厂通过实现信息技术(IT)与操作技术(OT)网络之间的连接,可提高生产率,同时提高生产的灵活性和可扩展性。这样,使用一个支持时限通信的无缝、安全的高带宽网络便可监控工厂的所有区域。 规模计算和可靠的通信基础设施是互联工厂的命脉。当今的网络面临着流量负载不断增长以及众多协议之间互操作性的挑战,这些协议需要使用复杂且耗电的网关来转换整个工厂的流量。通过向工厂边缘终端无缝交付关键的确定性性能,工业以太网可解决同一网络中的这些互操作性问题。过去一直缺乏专为可靠
[嵌入式]
详解恶劣工业环境下时限通信的可靠<font color='red'>以太网</font>物理层解决方案
Achronix针对数据中心应用推具有最高FPGA存储带宽的PCIe加速板
2016年6月21日,Achronix Semiconductor公司(Achronix Semiconductor Corporation)宣布:从即日起提供符合PCIe外形规格的全新Accelerator-6D加速板,它带有业内最高的单个现场可编程门阵列(FPGA)器件存储带宽,可用于实现针对高速数据中心加速应用的PCIe扩展卡。这款加速板集成了一片SpeedsterTM22i HD1000 FPGA器件,该器件拥有700,000个查找表并连接至6个独立的存储器控制器,从而可支持多达192 GB的存储资源和690 Gbps的总存储带宽。 HD1000上的每个动态随机存取存储器(DRAM)控制器都以1,600 MT/s的速率运
[嵌入式]
Achronix针对数据中心应用推具有最高<font color='red'>FPGA</font>存储带宽的PCIe加速板
基于FPGA的数字正交混频变换算法的实现
0 引 言 传统的正交下变频是通过对模拟I、Q输出直接采样数字化来实现的,由于I、Q两路模拟乘法器、低通模拟器本身的不一致性、不稳定性,使I、Q通道很难达到一致,并且零漂比较大,长期稳定性不好,不能满足高性能电子战设备的要求。为此,人们提出了对中频信号直接采样,经过混频来实现正交数字下变频的方案,这种下变频的方法可以实现很高精度的正交混频,能满足高镜频抑制的要求。采用可编程器件FPGA对该算法流程进行实现,能满足在高采样率下的信号时实处理要求,在电子战领域中有着重要的意义。 1 数字正交混频变换原理 所谓数字正交混频变换实际上就是先对模拟信号x(t)通过A/D采样数宁化后形成数字化序列x(n),然后与2个正交本振序列cos(
[应用]
使用FPGA开发视频算法进行图像和实时视频处理
  人脑是我们所知道的最先进的紧凑型处理单元;但是,由于有了新的处理器、工具、架构和软件,图像处理方面的改进可能会让机器很快超越我们。新技术及其快速采用的速度为工业制造和检查以及医药、消费电子/游戏,当然还有机器人技术带来了巨大的潜力。   现在,我们在执行简单的任务(例如装满一罐水)时会执行比例、积分和微分 (PID) 等高级功能。事实上,我们进行如此复杂的运动控制和平衡,机器人可能很快就会嫉妒我们。然而,我们杰出的能力之一是我们能够在我们的视野中挑选出模式、执行物体识别、深度感知、跟踪运动和测量相对速度甚至加速度,这使我们与大多数机器不同。   早期的图像处理专注于澄清静止图像,许多用于边缘增强和呈现细微细节的算法并未
[嵌入式]
使用<font color='red'>FPGA</font>开发视频算法进行图像和实时视频处理
基于FPGA设计的医学监测用视力测试仪设计
项目简介 实现用FPGA随机生成不同方向的E, 通过VGA接口在显示器上显示,判断测试者按的按键方向是否正确,通过几轮测试计算并显示最终视力测试结果的功能。 所用器件 硬件说明 下图展示了整个视力测试仪的系统框架。通过开关选择有线和蓝牙两种模式。手动模式是通过板卡上的按键进行输入;蓝牙模式是通过手机蓝牙进行传输测试者选择的方向和确认信息。随机数模块产生每轮测试“E”的方向。通过控制模块与用户输入进行比对,产生结果,输出到VGA显示器上。同时在数码管上显示当前测试状态。 自动视力测试仪的系统框架 硬件连接 视力测试仪的硬件连接图 按照所示进行硬件连接 : 1)通过USB 下载线将计算机与Basys3上的micr
[医疗电子]
基于<font color='red'>FPGA</font><font color='red'>设计</font>的医学监测用视力测试仪<font color='red'>设计</font>
车载10GBASE-T1以太网智能测试解决方案
高速车载网络越来越依赖带宽高达10 Gbit/s的万兆以太网通信,然而高带宽网络必将测试系统的性能推向极限。如何通过现有的软硬件测试工具来克服这一挑战?本文将为您介绍实现方案。 现如今,车载平台上的车载高性能计算控制器HPC、ADAS传感器和信息娱乐系统等需要进行实时的大量数据交互,100BASE-T1或1000BASE-T1的车载以太网已无法满足车载网络通信所需的带宽。基于IEEE 802.3ch规范的万兆以太网10G-T1,具有高达10 Gbit/s的传输速率,将在高速网络数据传输方面发挥越来越重要的作用,比如用于传输高分辨率的传感器及摄像头信号,以及高性能骨干网通信。 01 典型Ethernet测试环境 无论是分析、
[嵌入式]
车载10GBASE-T1<font color='red'>以太网</font>智能测试解决方案
恩智浦ARM微控制器的以太网吞吐量三种不同测量方案的介绍
本文介绍了一种测量以太网吞吐量的方法,提供了良好的性能估计,并说明了影响性能的各种因素。 以太网是世界上安装最广泛的局域网(LAN)技术。它自20世纪80年代早期开始使用,并被IEEE Std 802.3所涵盖,它规定了许多速度等级。在嵌入式系统中,最常用的格式是10 Mbps和100 Mbps(通常称为10/100以太网)。 有20多个内置以太网的恩智浦ARM MCU,涵盖所有三种几代ARM(ARM7,ARM9和Cortex-M3)。恩智浦在三代产品中使用了基本相同的实现,因此设计人员可以在系统迁移到下一代ARM时重用其以太网功能,从而节省时间和资源。 本文讨论了测量LPC1700产品上以太网吞吐量的三种不同方案。详
[单片机]
恩智浦ARM微控制器的<font color='red'>以太网</font>吞吐量三种不同测量方案的介绍
基于FPGA的简易 DDS 信号发生器的设计
前言 DDS 是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写,是一项关键的数字化技术。与传统的频率合成器相比, DDS 具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。作为设计人员,我们习惯称它为信号发生器,一般用它产生正弦、锯齿、方波等不同波形或不同频率的信号波形,在电子设计和测试中得到广泛应用 提示:以下是本篇文章正文内容,下面案例可供参考 一、pandas是什么? DDS 技术是一种全新的频率合成方法,其具有低成本、低功耗、高分辨率和快速转换时间等优点, 对数字信号处理及其硬件实现有着很重要的作用。DDS 的基
[测试测量]
基于<font color='red'>FPGA</font>的简易 DDS 信号发生器的<font color='red'>设计</font>
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved