基于FPGA和SMT387的SAR数据采集与存储系统

发布者:JoyfulSpirit最新更新时间:2010-11-29 来源: 电子设计工程关键字:FPGA  SMT387  SAR  数据采集  DSP 手机看文章 扫描二维码
随时随地手机看文章

  合成孔径雷达(SAR)是主动式微波成像雷达,近年来随着合成孔径雷达的高速发展,对作为重要部分的数据采集和存储系统的要求越来越高,比如对数据采集系统的采样率、分辨率、存储深度、数字信号处理速度、抗干扰能力等方面提出更高要求。基于标准总线并带有高速DSP的高速数据采集板卡和利用高速A/D转换器搭建的数据采集系统是超高速数据采集技术目前两大主流发展方向。SAR系统的数据采集和存储处理需要满足正交两路(I/Q)雷达回波信号数据同时采集,并实现高速传输和大容量长时间实时存储。根据这一要求,结合采集存储的发展趋势,设计并实现了一种应用于SAR,基于SATA硬盘的高速数据采集和存储系统。采用FPGA实现系统工作时序控制,DSP功能模块完成信号的处理和对硬盘的操作。该系统能够实现脱机,长时间,高速大容量的数据存储。

  1 系统构成及设计原理

  本系统由模数转换模块、采集存储控制模块、DSP功能模块和数据存储器(硬盘)组成。其中模数转换模块和采集存储控制模块位于电路板1,数据存储接口模块位于电路板2,板间按照SHB接口协议通信。系统实现思路为:首先采集正交输出的I/O两路模拟正交信号,经过并在雷达回波有效时间内将数据送入DSP功能模块转化数据格式。在两次回波有效窗的间隔时间内,将数据存入SATA硬盘中,系统结构如图l所示。

系统结构

  1.1 数据采集模块

  模数转换模块主要功能是:在120 MHz的采样时钟下,将I/O两路模拟正交信号转换成12位数字信号,送给后端的采集存储控制模块。该模块由信号调理器和A/D转换器2部分构成。信号调理器主要完成对输入信号的幅度和共模电压的调整,A/D转换器将调整后的模拟信号均匀采样得到其量化的数字信号。根据系统要求,运算放大器选用AD8351,该器件是用于RF和IF频段的低功耗差分运放,其输出放大增益和差分共模电压均可通过调整片外相应电阻阻值实现。A/D转换器选用AD9430,该器件分辨率为12位,最高转换速度为170百万次/秒,输入信号模拟带宽为710 MHz,输出模式可灵活配置。

  1.2 采集存储控制模块

  采集存储控制模块是整个系统运行控制的核心部分之一,其内部框图如图1的FPGA部分。该采集控制模块的主要功能是:前端采集的数字信号在输出控制模块的控制下(编码等处理),经SHB送到DSP功能模块,DSP通过基于纽曼-皮尔逊准则的滑窗检测算法计算出有效信号的具体位置,并得到这些参数(CalEnd、Start、Hold、Error、Pause、Delay、CalPRF、PRF-INCRS和Full),然后经过编码将这些参数传送给采集控制模块,采集控制模块通过译码模块,恢复这些参数并通过这些参数控制时序,就可以采集信号的有效部分。最后通过SHB把这些有效信号传给DSP功能模块,存储在SATA硬盘中。该采集存储控制模块的时钟为120 MHz。

  根据设计要求,采集存储控制模块的最高工作频率为240 MHz,由于该模块的主要功能是对系统中各子模块的接口连接和控制,所以其外部接口较多,还涉及到多电平模式间的转换和兼容。通过最后的仿真综合分析,本方案设计选用Virtex 4系列的FPGA器件XC4VFXl2。

  如图1中的FPGA框图,采集存储控制模块包括4个主要的功能模块,其中总体时序控制模块是核心模块。按照系统工作要求,本系统设计并实现了如下工作:系统开机后,外部硬件电路将对系统进行自动复位。复位信号有效后,总体时序控制部分将进人状态“0001”,对总体时序控制所有参数进行初始化配置。参数配置结束后,将自动从状态“0001”跳转至状态“0010”。状态“0010”是总体时序控制部分的状态跳转中枢,该状态根据译码产生的控制信号跳转至相应的下一个工作状态。根据系统工作方案,需要FPGA在接收到START(开始传送数据)信号后,向后端传送单个完整的PRI内的采样信号。此时CalEnd信号为系统初始化时,所赋予的初始值‘0’。当FPGA接收到START信号后,将检测CalEnd是否为其初始值‘0’,当条件“CalEnd=‘0’and START=‘1’”成立时,总体时序控制部分将从状态“0010”跳转至状态“001 1”。总体时序控制部分跳转至“0011”状态后,将在下一个PRF上升沿到来后,通过PCI输出管理部分开启SHB输出通道,传送一个完整PRI内的采样数据。数据传送完毕后,自动由状态“0011”跳转回状态“0010”,并关闭SHB输出通道。至此,FPGA对计算结束前接收的一次START命令执行完毕。当信号检测部分一旦检测到有效回波位未能完整落入采样PRI内时,将通过SHB输入端口向FPGA传送DEIAY信号。在总体时序控制部分接收到输入信号译码产生的DElAY信号后,将在下一个PRF上升沿到来后,由状态“0010”跳转至状态“0100”,当延时完成后自动由状态“0100”跳转回状态“0010”。当信号检测结束后,后端模块将通过SHB输入单元把PRF延迟量传送至FPGA,同时将总体时序控制中的Ca-lEnd信号置高。当总体时序控制部分检测到CalEnd信号为高时,将在下一个PRF上升沿到来后,由状态“0010”跳转至状态“0101”。在状态“0101”中,根据计算的PRF延迟结果,对采样PRF的位置进行一次延迟。延迟结束后,将自动跳转至状态“0110”。状态“0110”中。总体时序控制部分将通过SHB输出控制模块关闭SHB通道。同时等待数据传送开始信号START。[page]

  2 DSP功能模块

  DSP功能模块主要由SMT387模块完成。本设计利用TMS320C6415型DSP完成了对回波信号采集数据的分析处理,并为前端数据模块提供相应计算结果,使信号采集模块得以准确完成对回波信号的有效采集。同时,利用SMT6087的文件操作系统将采样数据转换为FAT32文件系统下的数据格式,并将数据存人SATA硬盘中。

  SMT387是一款专门用于数据硬盘存储的DSP功能模块。其主要特点有:

  1)双SATA硬盘接口,采用Silicon Image Serial ATALink 3512;

  2)600 MHz工作频率的TMS320C6415DSP;

  3)Virtex-ⅡPro FPGA;

  4)1组60针的SHB接口;

  5)8 MB的Flash为脱机工作提供配置,其中数据传输采用的SHB协议是一种高速数据传输协议,其传输速率可达240 MB/s。

  SHB总线由两组相互独立的SunDance数据总线(SunDance Digital Bus,SDB)单元SDBl和SDB2构成,每组SDB单元含有16根数据线,3根控制信号线WEN,REQ,ACK和1根时钟线CLK。每组SDB单元均可独立地配置为单向收发或双向收发的工作模式。

  在本系统中,采用滑窗检测的方法对有效回波进行检测。滑窗检测器在PRI内对N个采样样本点求平方和,其检测变量数学表达式:

公式

  式中,Gn为检测变量的初始值;xi,xj为A/D输出采样样本点,i,j=0为单个完整PRI内采样数据的起始点,i,j=M-1为该PRI内采样数据的终止点;M为单个完整PRI内采样点总数,N为检测滑窗宽度。当Gj超过所设定门限β(Gj>β)时,则认为此时信号有效。

  根据输出的噪声采样样本点xi,可计算得到xi的均值、方差和门限:

公式

  其检测具体流程如下图2所示。

检测具体流程

  下面是DSP中的的部分代码(其中很多函数是SMT6087操作系统自带的):

程序[page]

  3 测试结果

  本系统的主要功能就是检测有效信号的位置并对有效信号进行存储。测试方案:利用Tektronix AWG420信号源输出30 MHz中频,10 MHz带宽,10 us脉宽的线性调频信号模拟实际工作中的线性调频信号。PRF为1 kHz,系统采样率为120 MHz。用示波器(Tektronix TDS505Z)进行观察,信号检测结果如图3所示,图3(a)无输入信号,所以没有有效回波信号,只有数据采集窗;由图3(b)可见,当有信号输入时,开机后数据采集窗迅速锁定有效信号位置,有效信号在采样窗内,说明DSP功能模块正确地锁定了信号的有效位置。图4和图5是整机现场测试结果,输入脉冲压缩信号。图4是输入的I/O信号频谱,图5是从硬盘中读出的信号经傅里叶变换后的频谱,因此本采集存储系统能够成功完成数据的采集和存储功能。

信号检测结果

输入的I

从硬盘中读出的信号经傅里叶变换后的频谱

  4 结论

  根据现存的雷达信号采集存储系统存在的不能脱机工作、存储速度不够快、不便于野外工作的问题,提出了一种新的采集存储系统。该系统运用纽曼-皮尔逊准则的滑窗检测算法检测回波信号中有效信号的位置,达到只存储有效信号,大大降低了对存储速度的要求。该系统还设计了一套基于SMT6087操作系统的数据格式转换软件,可以不通过计算机直接将数据转换为FAT32格式,大大提高了系统在野外工作的能力。但纽曼-皮尔逊准则存在一定漏检概率,也就是会丢失一些有效信号,使得采集的信号不够完整。为了提高存储数据的准确性,设计一套完全不丢失数据的采集存储系统其有重大意义。

关键字:FPGA  SMT387  SAR  数据采集  DSP 引用地址:基于FPGA和SMT387的SAR数据采集与存储系统

上一篇:基于TMS320VC5410 的DES 加密系统设计
下一篇:基站DSP之战即将打响

推荐阅读最新更新时间:2024-05-02 21:12

语音识别及其定点DSP实现
      语音识别研究的根本目的是研究出一种具有听觉功能的机器,能直接接受人的口呼命令,理解人的意图并做出相应的反映。语音识别系统的研究涉及微机技术、人工智能、数字信号处理、模式识别、声学、语言学和认知科学等许多学科领域,是一个多学科综合性研究领域。近年来,高性能数字信号处理芯片DSP(Digital Signal Process)技术的迅速发展,为语音识别的实时实现提供了可能,其中,AD公司的数字信号处理芯片以其良好的性价比和代码的可移植性被广泛地应用于各个领域。因此,我们采用AD公司的定点DSP处理芯片ADSP2181实现了语音信号的识别。    1 语音识别的基本过程   根据实际中的应用不同,语音识别系统可以分
[嵌入式]
基于FPGA的LED体三维显示方案研究
   摘 要: 基于人眼视觉暂留特性及LED 的高速发光特性, 设计了一套LED 体三维显示系统。首先利用Matlab 生成三维数据, 通过红外模块传输到显示驱动电路; 其次快速旋转LED 阵列, 由角度编码器获取旋转角度值, 并根据角度值计算对应的二维截面图形; 最后通过调制LED 的发光与消隐实现相应的显示。该系统基于24×16 二维LED 阵列, 具有69120个体像素, 实现了空间尺寸为Φ9414 mm ×66.8 mm 的稳定柱体内三维显示。    引 言   众所周知, 视觉是人类感知世界的最重要的方式, 而现实生活中的所有物质形态都是以三维空间而客观存在。三维显示能真正地再现客观世界的立体空间, 提供更符合人们观
[家用电子]
基于<font color='red'>FPGA</font>的LED体三维显示方案研究
基于ARM11和DSP的3G视频安全帽设计
1.引言 为提高在高危工作场所现场作业的可控性,本文采用仿生学原理和高集成度设计实现了与人眼同视角的3G视频安全帽。本设计由视频安全帽和腰跨式数据处理终端两部分组成,采用高可靠性航空插头连接。其中图像处理采用三星公司的S3C6410 ARM11处理器和TMS320DM642 DSP处理器组成。本设计结合DSP处理器在视频压缩方面的优势和运行于ARM之上的Linux操作系统在数据管理与任务调度机制方面的出色表现,由DSP完成图像处理功能,并通过高速接口把视频数据传输给嵌入式微处理系统,完成视频数据的传输、存储功能。 2.系统构成 本设计由视频安全帽和腰跨式视频终端两部分组成。视频安全帽中包含1路视频输入、1路音频输入和1
[单片机]
基于ARM11和<font color='red'>DSP</font>的3G视频安全帽设计
FPGA实现的FIR算法在汽车动态称重仪中的应用
引言   车辆在动态称重时,作用在平台上的力除真实轴重外,还有许多因素产生的干扰力,如:车速、车辆自身谐振、路面激励、轮胎驱动力等,给动态称重实现高精度测量造成很大困难。若在消除干扰的过程中采用模拟方法滤波,参数则不能过大,否则将产生过大的延迟导致不能实现实时处理,从而造成滤波后的信号仍然含有相当一部分的噪声。所以必须采用数字滤波消除干扰。 FIR滤波的原理及实现   本文采用FIR数字滤波,其原理如公式1所示。   Y(n)= (1)   其中h(k)为系统滤波参数,x(n)为采集的信号,Y(n)为滤波后的输出信号。   FIR滤波器的h(n)0≤n≤N-1   H(z)= (2)   在本文中N=17。由于h(n
[测试测量]
技术文章—使用高速NOR闪存配置FPGA
NOR闪存已作为FPGA(现场可编程门列阵)的配置器件被广泛部署。其为FPGA带来的低延迟和高数据吞吐量特性使得FPGA在工业、通信和汽车ADAS(高级驾驶辅助系统)等应用中得到广泛采用。汽车场景中摄像头系统的快速启动时间要求就是很好的一个例子——车辆启动后后视图像在仪表板显示屏上的显示速度是最为突出的设计挑战。 上电后,FPGA立即加载存储于NOR器件中的配置比特流。传输完成后,FPGA转换为活动(已配置)状态。FPGA包括许多配置接口选项,通常包括并行NOR总线和串行外设接口(SPI)总线。支持这些总线的存储器在不同厂商的产品之间总是存在微小的不兼容性,增添了采购多款存储器件的困难程度。 全新发布的JEDEC xSPI
[汽车电子]
技术文章—使用高速NOR闪存配置<font color='red'>FPGA</font>
完整的5V单电源8通道多路复用数据采集系统
PGIA     连接/参考器件 ADAS3022 16位、1 MSPS、8通道数据采集系统 ADP1613 650 kHz/1.3 MHz升压PWM DC-DC开关转换器 AD8031/ AD8032 2.7 V、每放大器800 μA、80 MHz、单路/双路、轨到轨I/O放大器 ADR434 超低噪声XFET基准电压源,具有吸电流和源电流能力   评估和设计支持 电路评估板 ADAS电路评估板(EVAL-ADAS3022EDZ) ADP1613 不包括评估板 转换器评估与开发板(EVAL-CED1Z)设计和集成文件 原理图、布局文件、物料清单 电路功能与优势 图1所示电路是一款高度集
[电源管理]
完整的5V单电源8通道多路复用<font color='red'>数据采集</font>系统
基于DSP的低频无线通信系统的设计方法
  低频感应通信是将待传输的数据经低频载波调制、信号放大、功率放大后,在发射器产生一定的交变电流,利用交变的电流产生交变的磁场,交变的磁场产生的电场,从而在接收器中产生感应电动势,经滤波、解调、解码等信号处理后,就可在接收端准确接收发送的信息,完成通信过程。因其利用电磁感应原理来实现通信,故称其为感应通信,当距离短时,感应通信比较容易实现。   1 低频感应通信理论   感应通信利用发射线圈中的交变电流产生变化磁场,接收线圈中感应出电动势后,再经过一系列的信号处理过程恢复发送信号,从而实现了通信的目的。   严格的感应通信理论是建立在麦克斯韦方程组的基础上。麦克斯韦方程组是在对宏观电磁现象的实验规律进行分析总结的基础上,经
[嵌入式]
莱迪思sensAI 4.1工具和IP将FPGA变为网络边缘智能AI/ML计算引擎
引言 毫无疑问,你已经读过或听说过,由于网络边缘设备数量激增,产生了不断增长的巨量数据流,这些设备包括自动驾驶汽车、物联网设备、消费电子产品,甚至是笔记本电脑和个人电脑。根据多项估算,截至2025年,运行的物联网设备将达到数百亿个。这些设备以连续数据流的形式向云端发送各种形式的数据,数据速率也千差万别。总体来说,这些设备将生成大量原始数据,且数据量随着时间的推移不断增加。 安全摄像头、自动驾驶汽车和PC中的视频录像机会生成高码率、高分辨率的视频流。物联网设备则生成中等码率的数据,汇聚到大数据流中。多种其他类型的物联网传感器(测量温度、压力、位置、光照水平等)会生成低码率数据流,但很快此类传感器的数量将会达到数十亿。因此,即
[嵌入式]
莱迪思sensAI 4.1工具和IP将<font color='red'>FPGA</font>变为网络边缘智能AI/ML计算引擎
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved